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Introduction



Problem introduction

We consider the following problem
L(uε, ∂z) uε := ∂tuε +

d∑
j=1

Aj(uε) ∂xj u
ε = 0 in ΩT ,

B uε
|xd =0 = ε gε on ωT ,

uε
|t⩽0 = 0,

(1)

where
• ΩT := (−∞,T ] × Rd−1 × R+ and
ωT := (−∞,T ] × Rd−1, with T > 0,

• we denote z = (t, y , xd) ∈ ΩT , and
z ′ := (t, y) ∈ ωT ,

t

y

xd

T •

ωT , z ′

ΩT , z

• the unknown uε is a (regular) function from ΩT to RN , N ⩾ 2,

• for all j = 1, . . . , d − 1, Aj is a regular map from RN into MN(R),

• B belongs to MM,N(R) for some 1 ⩽ M ⩽ N and is of maximal rank. 1
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Aj(uε) ∂xj u
ε = 0 in ΩT ,

B uε
|xd =0 = ε gε on ωT ,

uε
|t⩽0 = 0,

(1)

The dependency in ε of the system
comes from the boundary term ε gε,
where gε is given by, for z ′ ∈ ωT ,

gε(z ′) = G
(

z ′,
z ′ · φ
ε

,
z ′ · ψ
ε

)
,

where G belongs to H∞(ωT × T2), zero
for negative times t, and φ,ψ are in
Rd \ {0}.

t

y

xd

T •

ωT , z ′

ΩT , z

φ

ψ

O(ε)
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High frequency regime: geometric optics

→ We are interested here in the qualitative properties of the solution uε to (1)
when the wavelength ε in (1) is small, that is, in the high frequency regime.

→ Following the analysis of Lax and Hunter-Majda-Rosales, we look for an exact
solution to (1) under the form of a formal series, i.e. a WKB expansion reading
as

εU1

(
z, Φ(z)

ε

)
+ ε2 U2

(
z, Φ(z)

ε

)
+ ε3 U3

(
z, Φ(z)

ε

)
+ · · · , (2)

where Φ contains the phases of the solution. This is the framework of
geometric optics.

→ In the weakly non-linear framework, in the high frequency asymptotic (i.e.
when ε → 0), the leading profile U1 is proven to satisfy a quasi-linear system.

→ The exact solution to (1) is then to be approximated by a truncated sum of the
expansion (2).
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Difficulties of the problem



Brief state of the art i

• Same boundary value problem, but with only one phase on the boundary:
→ Mark Williams. “Singular pseudodifferential operators, symmetrizers,

and oscillatory multidimensional shocks”. In: J. Funct. Anal. 191.1
(2002), pp. 132–209,

→ Jean-François Coulombel, Olivier Gues, and Mark Williams.
“Resonant leading order geometric optics expansions for quasilinear
hyperbolic fixed and free boundary problems”. In: Comm. Partial
Differential Equations 36.10 (2011), pp. 1797–1859,

→ Matthew Hernandez. “Resonant leading term geometric optics
expansions with boundary layers for quasilinear hyperbolic boundary
problems”. In: Comm. Partial Differential Equations 40.3 (2015),
pp. 387–437.
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Brief state of the art ii

• Multiple phases for a semilinear problem:
→ Jean-Luc Joly, Guy Métivier, and Jeffrey Rauch. “Coherent nonlinear

waves and the Wiener algebra”. In: Ann. Inst. Fourier (Grenoble)
44.1 (1994), pp. 167–196,

→ Mark Williams. “Nonlinear geometric optics for hyperbolic boundary
problems”. In: Comm. Partial Differential Equations 21.11-12
(1996), pp. 1829–1895.

• Multiple phases for the quasilinear Cauchy problem:
→ Jean-Luc Joly, Guy Métivier, and Jeffrey Rauch. “Coherent and

focusing multidimensional nonlinear geometric optics”. In: Ann. Sci.
École Norm. Sup. (4) 28.1 (1995), pp. 51–113.
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Main difficulties

• Boundary value problems.

• Multiple phases on the boundary.
→ By nonlinearity, it creates a countable infinite set of frequencies inside

the domain, making more complex the functional framework.
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1st work: strongly stable systems



Set of frequencies inside the domain

•

ξ (xd)

η (y)

τ (t)

Rd+1(ΩT )

Rd (ωT )

ϕ

ψ

φ,ψ on the boundary.
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Functional framework : almost-periodic functions

We need a functional framework allowing to consider functions of the form∑
α∈F

Uα(z) e iz·α/ε.

We introduce new fast variables θ = (θ1, θ2) = (z ′ · φ/ε, z ′ · ψ/ε) ∈ T2 and
χd := xd/ε ∈ R+ so that, if α = (ζ, ξ) =

(
n1φ+ n2ψ, ξ

)
,

Uα(z) e iz·α/ε = Uα(z) e in1 θ1 e in2 θ2 e iξ χd .

We use the framework of almost-periodic functions in the sense of Bohr.
Roughly, these are series of the form∑

α

Uα(z) e in1θ1 e in2θ2 e iξχd

with uniform convergence and norm for (xd , χd) and of Sobolev type for (z ′, θ).
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Ansatz and main result

We look for an approximate solution of (1) under the form of a formal series
uε,app(z) = v(z, z ′ · φ/ε, z ′ · ψ/ε, xd/ε), where v is given by

v(z, θ, χd) :=
∑
k⩾1

εk Uk(z, θ, χd),

with U1 an almost periodic function in the sense of Bohr.

Theorem (K. 2021)
Under the uniform Kreiss-Lopatinskii condition and with assumptions on the
set of resonances, for s ⩾ 0 large enough, there exists a time T > 0 and a
leading profile U1 solution to the problem (3) given below, that governs the
evolution of the leading profile.
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WKB cascade

For uε,app to formally satisfy the system (1), a WKB study and a decoupling of
the cascade obtained shows that the leading profile U1 has to satisfy the
following system

E U1 = U1 (3a)

E
[
L(0, ∂z) U1 + M(U1,U1)

]
= 0 (3b)

B U1|xd =0,χd =0 = G (3c)

U1|t⩽0 = 0. (3d)

with E a projector.

Existence of a solution to (3) is obtained using energy estimates without loss of
derivative. Two terms have to be treated.
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Transport part

If U1 reads as
U1(z, θ, χd) =

∑
α

U1
α(z) e in1θ1 e in2θ2 e iξχd ,

then the transport part E
[
L(0, ∂z) U1

]
reads as a sum of transport terms

E
[
L(0, ∂z) U1

]
=

∑
α

(
∂t + vα · ∇x

)
U1

α(z) e in1θ1 e in2θ2 e iξχd ,

which are easy to treat in energy estimates.

Remark. The sign of the xd -component of vα determines if the frequency α is
incoming or outgoing.
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Quadratic part

As for the quadratic term E
[
M(U1,U1)

]
, we have

E
[
M(U1,U1)

]
=

∑
α,α′

πα+α′ L1
(
U1

α, n′
1 φ+n′

2 ψ
)

U1
α′ e i(n1+n′

1)θ1 e i(n2+n′
2)θ2 e i(ξ+ξ′)χd .
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1 φ+ n′
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)
acts as a derivative in θ.

• Only the terms for which the frequency α+α′ is characteristic remain, this
is resonance.
→ If α and α′ are collinear, there is always resonance, this is called self-

interaction, and generates terms of Burgers type (u ∂θu).

→ If not, this is a real resonance, and generates terms of convolution type,
that are more difficult to handle.

• The main additional difficulty compared to [Joly-Métivier-Rauch 1995] is
the lack of symmetry in the resonance terms.
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Proof of stability ?

• To prove stability, one solution consists in studying the difference

uε −
N∑

k=1

εk Uk

(
.,

Φk(.)
ε

)
,

but we do not know if the exact solution uε exists on a time interval
independent of ε.

• One could also use a large number of correctors Uk of the expansion

uε,app ∼
∑
k⩾1

εk Uk(z, θ, χd).

This leads to questions about the functional framework.
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2nd work: instability of the expansion



Weakly stable problems

Weakening the assumption on the boundary allows amplification to happen on
the boundary.

Considering a perturbation H of small amplitude O(εM) (M ⩾ 3) of a periodic
forcing boundary term G of amplitude O(ε2),

ε gε(z ′) = ε2 G
(

z ′,
z ′ · φ
ε

)
+ εM H

(
z ′,

z ′ · ψ
ε

)
,

with a particular configuration of boundary frequencies φ and ψ, we prove (K.
2022), on a study model, that an instability may be created.

ε−1

ε−1

xd

y

t

ΩT

ωTε3

ψ

ε2

ψ

ε2
φ

ε2 φ

ε1

φ1

ε2

ψ1

ε2 ν2

ε1

φ3

ε2

ψ2
ε1

ψ1

ε1
ψ3
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Thank you for your attention !
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