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Abstract  
 
We present a method for solving the Stochastic Dynamic Programming (SDP) “cost-to-go function” when 
applied to multi-reservoir stochastic optimization. We show how the SDP can be solved efficiently using 
Sequential Linear Programming (SLP). The SLP algorithm significantly reduces the number of evaluation of the 
SDP “cost-to-go function”. The method is compared with the state-of-the-art interior-point implementation Ipopt 
and a heuristic approach where some important decision variables are discretized. For all three methods, SDP 
algorithm is used to solve two stochastic hydropower optimization problems where the first one includes only 
linear constraints and the second one involves linear and non-linear constraints. Numerical results are obtained 
using real hydropower systems in Quebec, Canada, manage by Rio Tinto Alcan.  
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Stochastic Dynamic Programming (SDP) has been intensively used in the past decades for solving multi-
reservoir hydropower systems [1-2]. This algorithm aim to compute the so-called “cost-to-go function” (CF) 
used to compute the operating policy of the reservoirs. The CF depends on the water stored in the reservoirs at 
the beginning of the period and the water inflow to the installations. The evaluation of the function requires the 
solution of a small-scale optimization problem where the decision variables are optimized to maximize the 
current benefits plus the expected future benefits of water stored at the end of the period. So, the SDP algorithm 
can be viewed as a procedure that breaks down the multi-stage optimization problem into a series of one-stage 
small-scale optimization problems. But this function cannot be solved for all possible values of reservoir storage 
and water inflows (which would be impossible), but only for a set of discretization points. However, when the 
numbers of reservoirs exceed 3 or 4, the computation time of the SDP algorithm becomes very large. Efforts 
have been made to reduce the computation time of this algorithm. For example, it is possible to reduce the 
number of discretization points of the state variable [3-4]. With this strategy, the number of optimization 
problem to solve is reduced but, on the other hand, the CF is defined on a coarser grid. Another strategy consists 
in solving the optimization problems in a way that the number of evaluation of the objective function is reduced. 
Like in [6], if we have access to the derivatives of the objective function, an efficient non-linear programming 
approach can be used to solve the optimization problem. This strategy is used in this project and we present a 
new approach based on Sequential Linear Programming to solve the CF of SDP.  
 
 
The aim of this project is to develop a new method to compute the cost-to-go function efficiently and reduce the 
computation time of the SDP algorithm applies to a hydropower system. The system, which is run by Rio Tinto 
Alcan Quebec Power Operations Division, consists of 6 generating stations and 3 major reservoirs on Peribonka 
and Saguenay Rivers in Quebec, Canada, for an installed capacity of 3100 MW. The objective function of the 
one-stage optimization problem that must be solved to evaluate the CF includes the summation of two terms: the 
current benefits function and the expected water value function. The current benefits function is given by the 
hydropower function of the generating stations. At a weekly time step (step for which the SDP is applied), the 
hydropower function is smoothed to avoid discontinuity or non-differentiability. From an operational point of 
view, this approximation is good since a short-term optimization problem will be solved to disaggregate the mid-
term solution. The expected water value function is actually the CF function at the next period and is obtained 



recursively by applying SDP. Thus, this part of the objective function is also smooth. According to these 
properties, we can approximate the objective function accurately with a linear model. In addition, the models 
typically have few nonlinear constraints. We thus expect the trust-region Sequential Linear Programming (SLP) 
paradigm to be efficient. Nonlinear constraints are penalized in the L1 sense and the resulting non-smooth 
problem is rewritten using elastic variables. Starting from a feasible point, an improved candidate is found by 
solving a linear sub-problem. We compare SLP with the state-of-the-art interior-point implementation Ipopt and 
a “heuristic enumerative” approach where some important decision variables are discretized. These approaches 
are tested on two problems. The first is a sub-problem involving only the last two reservoirs of the system.  In 
this case, the CF sub-problem is composed of 12 variables and 5 linear constraints. The second problem is the 
entire hydropower system problem including all 6 generating stations and the three reservoirs. Each CF sub-
problem problem has 24 variables and 16 constraints (5 non-linear constraints and 11 linear constraints). We 
apply SDP to both problems with SLP, Ipopt and the heuristic approach. For each run of SDP, SLP gives a 
significant reduction in computation time without affecting the SDP operating policy. 
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Short-term unit commitment and loading problem of a multi reservoir hydropower system  
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Abstract  
 
We present a new method for solving the short-term unit commitment and loading problem of a hydropower 
system. Dynamic programming is used to compute maximum power output generated by a power plant. This 
information is then used as input of a two-phase optimization process. The first phase solves the relaxation of a 
nonlinear mixed-integer program in order to obtain the water discharge, reservoir volume and optimal number of 
units working at each period in the planning horizon. The second stage solves a linear integer problem to 
determine which combination of turbines to use at each period. The goal is to maximize total power produced 
over all periods of the planning horizon which consists of a week divided into hourly periods. Start-up of 
turbines are penalized. Numerical experiments are conducted on the Rio Tinto Alcan power plants in Quebec, 
Canada. 
  
Keywords Hydro unit commitment, nonlinear programming, linear integer programming. 
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The planning of hydroelectric systems is complex and requires different optimization processes. A good planning 
allows to produce more power with the same quantity of water, generating substantial savings for the producer, 
even with a slight computational improvement. Short-term optimization is mandatory to determine how to split 
the available water volume in an optimal way between the turbines of a plant. Each turbine has a different 
efficiency curve which means that for the same water discharge the power will differ.  The planning horizon is a 
week divided into hourly periods and the problem consists of finding the optimal water discharge as well as the 
volume of the reservoir for each plant in order to maximize power production, and penalize turbine start-ups. 
These optimization problems are difficult to solve since the hydroelectric production functions are non-convex. 
They are also highly nonlinear and depend on turbine efficiency, net water head which is a nonlinear function of 
the water discharge and reservoir elevation and finally, water discharge of each unit. Furthermore, turbines have 
forbidden operating zones, which complicates the problem. Short-term unit commitment and loading problem 
have been studied in the past and many researches are still undergoing. Many methods have been proposed to 
solve the short-term unit commitment and loading problem, including dynamic programming [1,2], linear 
programming [3], nonlinear programming [4,5] or global optimization techniques [6,7].	  
 
In this project, we propose a new approach for modeling the short-term unit commitment and loading problem 
that requires two stages and allows to find a feasible solution at the end of the first stage. The models are then 
tested on the Saguenay-Lac-St-Jean hydroelectric system which is privately owned by Rio Tinto Alcan in the 
province of Quebec, Canada. This company operates aluminum plants in that region and can produce 90% of the 
energy they need to operate them. The installed capacity is of 3100 MW and is composed of 42 turbines divided 
in five hydroelectric plants. Five reservoirs are available and three of them have a stocking capacity of over 2000 
hm3.	  
 
We propose a model with a reasonable number of variables, embedded into a two-stage optimization approach.	  
A dynamic programming algorithm is used as a pre-process to the optimization method. Total power output that 
can be generated by a certain combination of active turbines is computed. For every discretization of the water 
discharge, volume and combinations of active turbines, the algorithm calculates the power output. The maximum 
power output for every disretization of the water discharge, volume and for each number of active turbines is 
retained and a maximum output surface is created for each number of active turbines. Smoothing splines are then 
used to fit the data obtained and the optimization models attempt to maximize the total energy production given 
by these splines. This allows to solve the models in a very short computational time since the hydroelectric 



production functions are calculated independently.  Since the goal is also to limit the unit restarts, the 
optimization method uses two models.  The first stage solves the relaxation of a nonlinear mixed-integer 
program in order to find volume, water discharge and number of active turbines at each period. The objective 
function maximizes energy production and the constraints are the water balance, choice of one surface of active 
turbines as well as volume and water discharge limits. The second stage solves a linear integer model to find the 
exact combination of turbines that maximizes total power but also penalizes start-up of turbines. Constraints are 
choosing one combination of turbines and the link between the start-up of turbines and the combination used.	  
	  
Numerical comparisons of our approach versus the real historical values were conducted on two hydropower 
plants with both five turbines. The planning horizon consisted of one week divided in hourly periods for a total 
of 168 periods. The first nonlinear model has 1680 real variables and 674 constraints. The linear integer model 
has 7056 binary variables and 26918 constraints. The computational time to solve the unit commitment model is 
very low (a few seconds) so that the approach proposed allows us to find a solution in a computational time that 
is more than satisfying for needs of operation. Thirty test cases were compared. In 27 of the cases, an 
improvement ranging from 0.002 GWh to 2.145 GWh is observed, with all cases given the same initial starting 
point. The average improvement for all cases is of 0.4 GWh. We found that our approach is slightly sensitive to 
the starting point but very little work has been done on selecting the starting point. Multistarts or variable 
neighborhood searches will be the subject of future research. Also, other developments based on this method will 
involve using uncertainty related to inflows in order to create a stochastic programming model.	  
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Finding optimal strategies of almost acyclic simple stochastic games

Pierre Coucheney

The optimal value computation for turned-based stochastic games with reachability objectives, also
known as simple stochastic games, is one of the few problems in NP \ coNP which are not known to be
in P. However, there are some cases where these games can be easily solved, as for instance when the
underlying graph is acyclic. In this work, we try to extend this tractability to several classes of games that
can be thought of as ”almost” acyclic. We give some fixed parameter tractable or polynomial algorithms
in terms of different parameters such as the number of cycles or the size of the minimal feedback vertex
set.
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European energy equilibrium and decomposition

Anes Dallagi

Abstract We consider addressing the issue of numerical resolution of network multistage stochastic op-
timization problems. We will particularly focus on different decomposition schemes and present different
coordination algorithms approximating optimal strategies in a stochastic framework. We apply these
schemes to a long-term stochastic model of the European electricity market.

Keywords Stochastic optimization · splitting Algorithm

1 Introduction

Modeling energy transmission is a very important issue for any electric utility in Europe. It is strategic
for utility companies to be able to plan the energy exchange evolution up to 30 years ahead. This
prospective is used for example in deciding which capacity we need to expand over the next years. The
way the prices of commodities evolve and an accurate forecasting of the consumption load are related
issues. Due to the time horizon of these problems one should take into account the uncertainty in order
to provide reliable decisions. Furthermore, due to computational issues (curse of dimensionality), one can
think about computing decentralized strategies for long term investments and daily power production.
This turn out to be sub-optimal for most of network configurations and we need elaborated coordination
schemes in order to approach optimality.

2 The model

We consider a network with zones and links. Each zone has its own production units and is subject to a
unit commitment problem: it has to satisfy a stochastic demand using its hydro and thermal units and
eventually importing and exporting using its links.

We denote by Fa(qa) the cost of producing in Area a while exporting the quantity qa, F (q) =
∑
a∈A Fa(qa)

and C(q) will denote the cost of transmitting through the network the quantities q = (qa)a∈A, where A
is the set of modeled areas.

Thus, the problem to be solved can be presented as follow :
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min
q

F (q) + C(q)

3 The Algorithm

Splitting methods aims at finding a primal dual solution to the system:

λ ∈ ∂F (q)

−λ ∈ ∂C(q)

where ∂F (·) and ∂C(·) denote the subgradient operator associated to functions F (·) and C(·). We are
using now the forward-backward method developped in ([LM79], [Pas79]).

1. Choose arbitrarily qk=0

2. Find λk+1 ∈ ∂F (qk)
3. Compute qk+1 = argminq C(q)+ < λk+1, q > + 1

2ρk
||q − qk||2

4. Go to step 2 with k ← k + 1

When one of the two functions is additive, say F (·), the problem rewrites:

min
q

C(q) +
∑
a∈A

Fa(qa)

then the resulting first step of the forward-backward algorithm becomes separated. It amounts to finding
for all a ∈ A λk+1

a ∈ ∂Fa(qka). The second step involving the “coupling function” C(·) will be interpreted
as a “coordination step”.

In our presentation we will try to answer and illustrate two main questions :

1. How to extend this algorithm when the variables are stochastic?
2. Which interpretation can we make of the original algorithm and the different approximations that

will be made.
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A Unified View on Tight Formulations for the Unit Commitment Problem
with Optimal Transmission Switching

Fabio D’Andreagiovanni · Michela Di Lullo ·
Giovanni Felici · Fabrizio Lacalandra

Abstract The classical Unit Commitment Problem (UC) consists in determining the production of a set
of thermal and hydro power generation units over a given time horizon, in order to meet a forecast energy
demand and minimize a cost function [2]. In the last years, in connection with the UC, increasingly
attention has been given to active switching, namely the possibility of changing the topology of the
transmission network by tripping some of the lines. Active switching has been indeed recognized as an
important way to improve capacity and reliability of the network. Modifying the network topology is also
very useful in modern electricity systems, where the penetration of non-programmable renewable energy
sources is high and tends to be very concentrated in some zones of the network. As a consequence, the
interest for automatic and optimized switching procedures is currently spreading [1].

In this paper, we address the UC when complemented by active switching, thus leading to so-called Unit
Commitment with Optimal Transmission Switching (UCOTS). We formulate the UCOTS as a mixed
integer linear program, where we unify tight formulations recently proposed in literature for relevant
subfamilies of constraints of the problem (e.g. [4]). Concerning the cost function, in our formulation
we approximate the quadratic thermal cost objective function by a piecewise linear function based on
perspective cuts [3] and we propose a new simple and effective way to perturb it, with the aim of breaking
symmetries induced by optimal transmission switching decision variables. Our original solution approach
also exploits specialized branching priorities.

Computational experiments on realistic UCOTS instances highlight that our new framework is able to
find optimal and near-optimal solutions in reasonable amount of time by direct use of a state-of-the-art
commercial MIP solver.

A preliminary version of this work is presented in [5], to which we refer the reader for details about the
optimization model.
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Robust multi-objective optimization with surrogate models

Sebastien Da Veiga

Abstract In the robust optimization framework, available methods usually encompass two intertwining
stages: an optimization loop on the controllable variables requires several propagations of the uncertain
variables to evaluate the criterion to be optimized (e.g. the mean of the output of interest). When sev-
eral criteria are considered, multi-objective algorithms necessitate even more propagations since they
generally involve a higher number of function evaluations. When the objective functions are obtained
through a computationally expensive simulator (e.g. resolution of large-scale PDEs), such a straightfor-
ward approach is impractical.
A standard technique to overcome this computational burden is to replace expensive calls to the simu-
lator by a so-called surrogate model, which is cheap to evaluate. This approximating model is built with
a small number of simulator evaluations and is used as a proxy during propagation and optimization
loops. In particular, Gaussian Process (GP) regression is a popular nonparametric model which has been
used in many industrial applications for the past decade [11,10]. Besides its interpolation property, it
also provides an estimate of the prediction error at any unobserved points. However, the response surface
step suffers from non-adaptivity: indeed, the simulations used to build the proxy model are fixed a priori.
This leads to a global approximating model, while it should be refined with respect to our goal. The
standard way to overcome this limitation is to use a goal-oriented adaptive strategy. For example, the
classical Efficient Global Optimization strategy (EGO [5]) builds upon the GP properties to propose an
adaptive algorithm for mono-objective optimization: starting from an initial design, additional simula-
tions are added in order to refine the proxy model in promising regions, i.e. where the minimum is likely
to be and where the model is not predictive. Interesting regions are defined with the so-called Expected
Improvement (EI) criterion, that is a balance between exploration and optimization. Several extensions
for multi-objective optimization have also been proposed ([4,6–9,13,12]).
In this paper, we generalize these ideas to the robust multi-objective framework. More precisely, we first
recall the extension of EGO for the robust minimization of a mean which was developed by Janusevskis
& Le Riche [3]. We also detail the HyperVolume Expected Improvement (HV-EI) criterion, which is the
generalization of EI for multiple objectives [2]. In a nutshell, it measures the improvement in hypervol-
ume that could be gained by adding a simulator evaluation to the experimental design used to build
the proxy model. For robust multi-objective optimization, we deal with dependent GP models (e.g. the
mean of the simulator vs its variance): our main contribution is to generalize and study the extension
of HV-EI for correlated objectives. Our methodology is then the following:
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1. Build an initial experimental design (in the space of controllable and uncertain variables) and get
the corresponding simulator evaluations

2. Compute the GP surrogate model for each objective (mean, variance, quantile, ...)
3. Estimate the Pareto front by providing the proxy models as objectives to any multi-objective opti-

mization algorithm (e.g. NSGA2 [1])
4. Find the best point with respect to the generalized HV-EI criterion and perform the simulation.
5. Add this new simulation result to the experimental design, update the GP models and go back to

step 3.

This loops usually stops when it reaches a criterion specified by the user or the maximum number of
simulations allowed.
Finally, we illustrate the potential of our methodology on a synthetic example and on a reservoir engi-
neering problem related to well placement. In practice, the issue is to determine where to drill new wells
in an existing oil reservoir in order to maximize the potential production. In this setting, uncertainty
comes from the geological parameters of the reservoir model and the goal is to estimate well locations
that maximize the expected recovery while minimizing the risk expressed by its variance.

Keywords Robust optimization · Multi-objective optimization · Surrogate models · Gaussian process
regression

Mathematics Subject Classification (2000) MSC 90C29 · MSC 62G08

References

1. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multi-objective genetic algorithm: Nsga-ii. IEEE
Trans. Evol. Comput., 6 (2):182–197, 2002.

2. M. Emmerich, A.H. Deutz, and J.W. Klinkenberg. The computation of the expected improvement in dominated
hypervolume of pareto front approximations. Technical Report 4-2008, Leiden Institute of Advanced Computer Science,
LIACS, 2008.

3. J. Janusevskis and R. Le Riche. Simultaneous kriging-based estimation and optimization of mean response. J. Glob.
Optim, 55 (2):313–336, 2013.

4. S. Jeong and S. Obayashi. Efficient global optimization (ego) for multi-objective problem and data mining. In et al.
Corne, D., editor, Proc. CEC, pages 2138–2145, Los Alamitos, 2005. IEEE.

5. D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expensive black-box functions. J. Glob.
Optim, 13 (4):455–492, 1998.

6. A.J. Keane. Statistical improvement criteria for use in multiobjective design optimization. AIAA J., 44 (4):879–891,
2006.

7. J. Knowles. Parego: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimiza-
tion problems. IEEE Trans. Evol. Comput., 10 (1):50–66, 2006.

8. W. Liu, Q. Zhang, E. Tsang, C. Liu, and B. Virginas. On the performance of metamodel assited moea/d. In L. Kang,
Y. Liu, and S. Zeng, editors, ISICA 2007. LNCS, volume 4683, pages 547–557. Springer, Heidelberg, 2007.

9. W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze. Multiobjective optimization on a limited amount of evaluations
using s-metric selection. In G. Rudolph, T. Jansen, S. Lucas, C. Poloni, and N. Beume, editors, PPSN 2008. LNCS,
volume 5199, pages 784–794. Springer, Heidelberg, 2008.

10. Carl Edward Rasmussen and CKI Williams. Gaussian processes for machine learning. 2006, volume 38. The MIT
Press, Cambridge, MA, USA, 2006.

11. Thomas J Santner, Brian J Williams, and William I Notz. The design and analysis of computer experiments. Springer
Verlag, 2003.

12. T. Wagner, M. Emmerich, A. Deutz, and W. Ponweiser. On expected-improvement criteria for model-based multi-
objective optimization. In Parallel Problem Solving from Nature XI, pages 718–727. Springer, 2011.

13. Q. Zhang, W. Liu, E. Tsang, and B. Virginas. Expensive multiobjective optimization by moea/d with gaussian process
model. IEEE Trans. Evol. Comput., 14 (3):456–474, 2010.



PGMO - COPI’14 

Decomposition Methods in Multistage Stochastic Optimization

Michel De Lara · Pierre Carpentier · Jean-Philippe
Chancelier · Vincent Leclère

Abstract Emerging power systems are becoming more and more complex, with the increase of inter-
mittent and variable renewable energies, the expansion of networks and markets and the penetration of
smart devices and storage. It follows that optimizing energy systems becomes more and more difficult. As
optimization is challenged by the complexity due to large size, dynamical aspects, and uncertainties, we
feel that decomposition approaches may prove particularly adapted. This is why we present, in an unified
framework, the main approaches to decompose multistage stochastic optimization problems for numeri-
cal resolution. This framework covers both Stochastic Programming (SP) (and scenario-based resolution
methods) and Stochastic Optimal Control (SOC) (and state-based resolution methods like Stochastic Dy-
namic Programming (SDP)), the two most well-known approaches and methods in multistage stochastic
optimization. This done, we go in more detail and outline more specific ones like Progressive Hedging
(PH), Stochastic Dual Dynamic Programming (SDDP), and Dual Approximate Dynamic Programming
(DADP).

Keywords optimization · stochastic · multistage · decomposition

We present, in an unified framework, the main approaches to decompose multistage stochastic optimiza-
tion problems for numerical resolution.

To fix ideas and simplify the exposition, we present a setting where all variables are parametrized by
discrete indexes. For this purpose, suppose given a finite integer horizon T ≥ 1 (so that the discrete time
t ∈ {0, T}), a finite probability space

(
Ω,F ,P

)
, endowed with a filtration {Ft}T−10 , a finite number N

of units (space). We consider the multistage stochastic optimization problem

min
X ,U

∑
ω∈Ω

N∑
i=1

T−1∑
t=0

P
(
{ω}

)
Lit

(
X i

t
(ω),U i

t
(ω),Wt(ω)

)
(1a)

s.t. X i
t+1

(ω) = f it
(
X i

t
(ω),U i

t
(ω),Wt(ω)

)
∀t , ∀i , ∀ω (1b)

N∑
i=1

θit
(
X i

t
(ω),U i

t
(ω)
)

= 0 ∀t, ∀ω (1c)

U i
t

is Ft -measurable ∀t , ∀i , (1d)
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where ω is a scenario of uncertainties given by ω =
{
ωt
}T−1
t=0

. The constraint (1b) represents the dynamics
of each subsystem, the constraint (1c) represents the coupling constraint between the subsystems (also
called units), and the constraint (1d) is the non-anticipativity constraint. Constraints function θit are
assumed to have image in Rnc .

As the SOC framing [1,8,9,4,2] includes the SP one [6,3], the above setting applies both to SP and SOC
problems.

In Problem (1), we minimize the sum of local costs — depending on step t, uncertainty ω and unit i
— over time, uncertainty and space. Were the constraints (1b)-(1d) absent, Problem (1) (illustrated in
Figure 1a) would consist in minimizing a sum of independent costs; as the minimum of the sum is the
sum of the minima, the optimization problem would be decomposed. However, as illustrated in Figure 1b,
the local costs are linked with respect to

– time through the dynamics of the system (e.g. Equation (1b));
– unit through the coupling constraints (e.g. Equation (1c));
– scenario (uncertainty) through the nonanticipativity constraint (e.g. Equation (1d)).

unit

time

uncertainty

(a) Local costs

unit

time

uncertainty

(b) Local costs linked

Fig. 1: Representation of the local costs depending on time, uncertainty (scenario) and space (unit) and
the links induced by the constraints

We lay out different ways to divide the original complex problem into easier to solve subproblems. We
propose three angles to decompose the original problem: decomposition in time (step), decomposition in
scenario (uncertainty) and decomposition in space (unit), as illustrated in Figure 2.

Moreover, we distinguish two types of decomposition.

– In chained decomposition, like Dynamic Programming (see [1,2]), the original problem is solved by
means of successive smaller subproblems, solved one after the other (in Dynamic Programming, each
subproblem is solved only once). Chained decomposition relies on a specific structure of the coupling
constraint, like the flow of time.

– In parallel decomposition, like Progressive Hedging (see [5,7]), the original problem is solved by means
of parallel smaller subproblems, coordinated and updated by a master algorithm. These subproblems
can be obtained by dualizing the constraint, and have to be solved several times before obtaining an
optimal solution to the global problem.
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unit

time

uncertainty

(a) Time decomposition

unit

time

uncertainty

(b) Uncertainty decomposition

unit

time

uncertainty

(c) Space decomposition

Fig. 2: Decomposition according to time, uncertainty (scenario) or space (unit). Each plane carries a
problem with coupling in only two dimensions.
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BtrPlace: Flexible VM Management in Data Centers

Sophie Demassey · Fabien Hermenier

Abstract Data Centers are typical dynamic packing systems that operate at a large scale. Tens of
thousands of Virtual Machines (VMs) have to be deployed over thousands servers to execute clients
applications. For an efficient usage of resources (CPU, memory, storage, network bandwidth, etc.), vir-
tualization allows to co-locate several VMs on a single server if their cumulated resource demand does
not exceed their host capacity. The dynamicity of the system comes from variations in terms of resource
demand, VM arrival and departure, and server availability. Dynamicity comes also from the numerous
side constraints occasionally expressed by the users of the data center for different concerns. The assign-
ment of the VMs to the servers according to the resource and side constraints is under the control of the
so-called VM manager. This software component periodically reconsiders the current assignment to fit
the changes. It then schedules the required transitions, including live migrations, in order to minimize
the impact on the service. We present BtrPlace [1], an open-source VM manager taking benefits from
the expressivity and flexibility of the Constraint Programming paradigm to handle this optimization
problem in a dynamic way. Power saving strategies are discussed for giving an insight into the way the
VM manager may help to reduce the energy consumption of data centers.

Keywords VM manager · Constraint Programming · Flexibility · Power Saving

1 VM Repacking and Scheduling Problem

A conceptual model of the optimization problem solved by the VM manager can be stated as follows.
Consider a 2-states (initial/final) dynamic system which consists of a set R of p-dimensional bins with
static capacities Br ∈ Np, for all r ∈ R, and a set J of items with dynamic initial boj ∈ Np and final

bfj ∈ Np heights, for all j ∈ J . The initial state of the system is known and defined as an assignment
so : J → R satisfying

∑
j∈s−1

o (r)b
o
j ≤ Br for each bin r ∈ R. The system state changes by applying

a transition action to each item j ∈ J . The restricted set of allowed transitions is given as a table
∆j ⊆ T × R, where each element δ = (τ, r) indicates that a transition of type τ ∈ T = {S,L,M,U}
(standing for Suspend, Launch, Migrate, Unmoved) can be applied to item j ∈ J to reassign it from bin
so(j) to bin r. With any transition δ ∈ ∆j are associated a duration dδ ∈ N and a weight wδ ∈ N. If
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feasible, the problem is to associate with each item j ∈ J , a transition δ(j) = (τ(j), sf (j)) ∈ ∆j and a
time tj ∈ N to start this transition, such that the bin capacities are satisfied at any time∑

j ∈ s−1
o (r)|

t < tj + dδ(j)

boj +
∑

j ∈ s−1
f (r)|

t ≥ tj

bfj ≤ Br, ∀r ∈ R,∀t ≥ 0, (1)

and the weighted sum of the completion times is minimized∑
j∈J

wδ(j)(tj + dδ(j)). (2)

In this problem, the transition typecast is determined by the item j itself, its origin so(j) and destination
sf (j). Hence, determining a set of transitions δj comes to compute a feasible Vector Packing. This
problem is NP-complete in the strong sense even in the one-dimensional case (p = 1). In turn, determining
the times tj yields to a particular scheduling problem where a migrant VM consumes resources on its
origin server from time 0 to the end of its migration tj + dj , and on its destination server from the
start of its migration tj to the end of the transition plan. This can be viewed as a Resource Constrained
Scheduling Problem with no-wait, variable durations and consumer/producer tasks.

2 Handling Side Constraints with Constraint Programming

Another characteristic of the VM management problem is the presence of numerous and heterogeneous
side constraints. They are expressed by clients and data center operators to restrict the VM placement
according to different concerns (security, energy efficiency, performance, etc.). In practice, a constraint
forces or disallows the co-location of some VMs or restricts the cumulated resource usage on some servers.
As these requirements change over the time, the constraints must also be handled dynamically.

We developed BtrPlace [4], an autonomous VM manager based on Constraint Programming to handle
the dynamicity of the problem and the variety of the side constraints. BtrPlace comes with a high-level
language in which the users may express their constraints. Automatically and periodically, BtrPlace
retrieves the data (the current configuration and the future needs) and translates the user constraints to
generate a Constraint Programming model of the problem. Once a first solution is found, by solving the
model using an ad-hoc heuristic, the computed transition plan is applied. BtrPlace provides the awaited
flexibility to handle the heterogeneous side constraints. It is currently bundled with more than 20 types
of side constraints. Simulation shows its effectiveness for managing datacenters with 5,000 servers and
30,000 VMs [5].

3 Application to Power Saving

Rapid rates of growth in data center electricity use prevailed from 2000 to 2005 and slowed to 56%
since, yielding total electricity use by data centers in 2010 of about 1.3% of all electricity use for the
world [6]. Virtualization is one main factor contributing to slow down this growth. However, electricity
consumption is still growing, and as service demands keep rising, energy efficiency has become a new
key metric, besides performance and reliability, of data center management.

A number of energy-aware approaches are proposed in the recent literature (see e.g. [2] for a survey).
Acting at the level of the VM manager with a consolidation policy – for minimizing the number of servers
hosting VMs and turning off the idle ones – is one effective approach for power saving.

The generic and flexible framework of BtrPlace makes possible to integrate such a policy, both within the
objective function and as additional side constraints, while taking into account together the contracted
Service Level Agreements, including resource provisionning and individual user requirements, and the
energy consumption of the servers, including overheads generated by VM migrations.
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Assessment of Operation Policies for Different Levels of Reservoir Aggregation models in 
the Long Term Hydrothermal Scheduling 

Vitor Luiz de Matos. · Paulo Vitor Larroyd. · Erlon Cristian Finardi. 

Abstract 

The Long-Term Hydrothermal Scheduling (LTHS) problem plays an important role in power systems that rely 
heavily on hydroelectricity. The purpose of the LTHS problem is to define an optimal operation policy that 
minimizes the operation costs to meet demand over a long horizon. A popular solution approach to this problem 
is called Stochastic Dual Dynamic Programming (SDDP). To incorporate the inflow uncertainties, the LTHS 
problem is modeled as a multi-stage linear stochastic problem. In the Brazilian LTHS problem, some 
simplifications are made in the hydro power plants modeling in order to reduce the computational burden. As a 
result, this paper assesses the consequences of those simplifications in the operation policies. We show the 
results considering the Brazilian hydrothermal power system. 

Keywords: Stochastic Programming · Long-Term Hydrothermal Scheduling Problem · Reservoir Modeling 

Mathematics Subject Classification (2000): MSC 90C15 · MSC 90B36 · MSC 90B05 

1 Introduction 

The long-term hydrothermal scheduling (LTHS) problem aims to define the dispatch of each power plant in a 
power system of hydroelectric reservoirs and thermal plants in order to meet the demand for electricity over a 
long-term planning horizon (of months or years) at minimum expected operation cost (consisting of thermal fuel 
costs and penalties). In power systems that rely heavily on hydroelectricity and cannot buy energy from neighbor 
countries, such as those of Brazil and New Zealand, the hydrothermal scheduling problem plays an important 
role, given that if the water in the reservoirs is not used wisely throughout the operation, the system may present 
an expensive operation with high shortage risk. 

The LTHS problem can be formulated as a stochastic dynamic programming problem, in which reservoirs’ 
inflows are assumed to be random variables with a known continuous probability distribution. As it is impossible 
to solve the LTHS problem taking into account the continuous probability distribution, it is necessary to simplify 
the problem by modeling the original continuous distribution as an inflow scenario tree with a finite number of 
realizations.  

In the Brazilian hydrothermal power system, the ISO is responsible for the hydrothermal scheduling of the 
system and, as a consequence, it uses a chain of optimization models to make its decisions. In this context, the 
main result of the LTHS problem is the Future Cost Function (FCF), also known as Operation Policy, which 
represents the system expected operation costs in the future as a function of the stored water and the previous 
water inflows. This FCF is used as a boundary condition in the subsequent optimization model in the chain ([1], 
[2]). Due to the size of the scenario tree in a long term problem, the operation policy is obtained by means of the 
Stochastic Dual Dynamic Programming (SDDP), which was proposed by Pereira and Pinto in 1991[3]. 

Several models for the Brazilian LTHS problem ([2], [4]), including the official model used by the ISO, 
aggregates a set of hydro plants in a smaller number of equivalent reservoirs in order to reduce the size of the 
optimization problem [4]. In this case, the decisions variables are presented in terms of energy instead of water. 
According to Arvanitidis and Rosing ([5], [6]), the EER is most applicable when the sequence of monthly 
decisions on the total hydro production is more important than the allocation of this total among the hydro plants. 



This modeling was considered in the Brazilian case in order to reduce the computational burden, due to the large 
number of hydro power plants. 
 
However, the reservoir aggregation tends to be optimistic about the amount of energy stored in the energy 
reservoir, as inflows to a set of hydro power plant can be stored and/or used in other plants that belong to the 
same aggregated reservoir. Although the chain of models is supposed to be able to handle these modeling aspects 
and reduce its consequence, an optimistic operation policy with similar water values for all aggregated hydro 
plant may lead to a more expensive operation and in some cases to an increased shortage risk without the ISO 
realizing it.  
 
Therefore, in this paper we assess operation policies with different levels of hydro plants modeling aggregation. 
We aggregate the hydro power plants in reservoirs that belong to some electrical system in Brazil (official model 
approach) or hydro plants that are in the same cascade. Naturally, a more detailed modeling requires longer 
computational times to yield tight policies, when upper and lower bounds of the SDDP algorithm get closer. 
However, given that the ISO has limited time to compute the policy, it is important to understand the 
consequences of having a loosen policy in a more detailed modeling or a tighten policy in a simplified modeling. 
In order to assess the operation policies we consider a set of the Brazilian LTHS problem. 
 
2 Conclusions 
 
In this paper we show that simplifications allow us to build an operation policy that is closer to the optimal 
policy in terms of the simplified model. However, the simplified operation policy does not yield as good 
decisions as the policy obtained in a more detailed modeling, even though the optimality gap is bigger in that 
case. In this paper we analyzed the policies running for a fixed number of iterations and for a fixed time period. 
It is important to mention that those results indicate that in the Brazilian case we are not interested in monthly 
decisions of total hydro power production, but we are rather concerned about the water values for each reservoir. 
As it allows the ISO to understand where the water is more valuable to the system. 
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Extended formulations for robust maintenance planning at power plants

Boris Detienne

Abstract We consider the large-scale power plant maintenance scheduling and production planning
problem submitted by EDF to the 2010 Euro/Roadef Challenge. Electricity demand must be met by the
combined production of nuclear power plants and thermic plants. The latter can operate continuously
while the former have to be shut down regularly for refuelling and maintenance, and cannot produce
during outage periods. In this model, we introduce uncertainty about the duration of maintenance
operations: we assume that the durations of outages can be extended beyond their normal durations.
The objective is to minimize the worst-case total power production cost. In the context of a rolling
horizon approach, we investigate the impact of different hypotheses on the uncertainty set on the cost
of the solutions and on the difficulty to obtain good solutions. Our solver uses an extended formulation
of the problem, which is solved by column generation.

Keywords energy ; electricity production ; maintenance planning ; column generation ; robust
optimization ; rolling horizon

Mathematics Subject Classification (2000) MSC 49M37 · MSC 65K05 · MSC 90C15

1 Problem

We consider the large-scale power plant maintenance scheduling and production planning problem sub-
mitted by EDF to the 2010 Euro/Roadef Challenge [3]. Two types of power plants are used to satisfy
a customer demand over a specific time horizon. Thermic plants can operate continuously while nuclear
plants have to be shut down regularly for refuelling and maintenance, and cannot produce during outage
periods. The decision to be made consists of the dates of outages, the amount of refueling for nuclear
plants, and production level for both types of plants.

In the variant of the problem considered here, we assume that the duration of the outages is uncertain.
More precisely, the outage of a nuclear plant can be randomly extended within a given range, this change
in data being revealed at the expected end of outage. Furthermore, we assume that missing production is
counterbalanced by additional production by thermic plants. The cumulative capacity of thermic plants
is always sufficient given the presence of an artificial plant that represents outsourcing. Therefore, our
model is two-stage: the first-stage decisions are the planning of nuclear plants as well as the refueling
levels, while the plannings of thermic plants constitute the second-stage, or recourse, decisions. The

Boris Detienne
Institut de Mathématiques de Bordeaux, Université de Bordeaux, & Team ReAlOpt, INRIA Bordeaux Sud-Ouest E-mail:
boris.detienne@math.u-bordeaux1.fr
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Fig. 1 Path example, node label =(week, fuel level)

objective is to minimize the cost of refueling nuclear plants plus the cost of production by thermic
plants.

2 Solution approach

For the first-stage model, we use an extended formulation that we designed for the deterministic version
of the problem [2]. The production schedule of nuclear plants is modeled as a path flow in a state
network (see Figure 1). Each arc of this network represents a transition from a given pair defined by a
time period and a fuel level to another such pair at a later period. To an arc is associated a production
vector that defines the level of production of the plant in each of the concerned time periods. Path
solutions are generated dynamically as pricing problem solutions in solving the extended formulation by
column generation.

In the following Mixed Integer Linear Programming model, simplified for the sake of clarity, dt is the
customer demand at period t, while bi is zero for all nodes i of the state network, except for source
and sink nodes. Variable xkij is equal to 1 if arc (i, j) is part of the path for nuclear plant k (first-stage
decisions). The amount of production of thermic plant j during t (second-stage decisions) is denoted
pjt, while, aktij is the amount of production by nuclear plant k during period t, when arc (i, j) is part
of the corresponding path. Constraints (2) are the network flow balance constraints, Constraints (3) are
the demand satisfaction constraints, and Constraints (4) are various constraints (e.g. minimum spacing
between outages. . . ) restricting the set of first-stage variables.
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(P ) : min
∑
k,i,j

ckijx
k
ij +

∑
j,t

Cjtpjt (1)

∑
(i,j)∈Ek

xkij −
∑

(j,i)∈Ek

xkji = bi ∀k, i (2)

∑
k,i,j

aktij x
k
ij +

∑
j,t

pjt = dt ∀t (3)

Fx ≤ f (4)

xkij ∈ {0, 1} ∀k, i, j (5)

0 ≤ pjt ≤ Ujt ∀j, t (6)

In the robust extension of the model, the uncertainty on the duration of outages translates into a random
modulation of the production vector akij associated to an arc (i, j) in a network k. Assuming that the
actual level of production of a plant belongs to an interval between zero and its nominal production
capacity, we use Bertsimas and Sim’s reformulation [1] to model the simple uncertainty set where, at
each time period, not more than Γ outage extensions occur. More complex polyhedral uncertainty sets
are adressed using various reformulations of the problem and we show how our optimization algorithms
must be modified to take them into account.

We have tested our robust approaches within a rolling horizon framework, to assess the benefits and the
relevance of the robust hypotheses.
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Optimization algorithms: worst-case behaviour and related conjectures 
 
Antoine Deza  
 
 
 
Abstract : 
 
The simplex and primal-dual interior point methods are currently the most computationally successful 
algorithms for linear optimization. While the simplex methods follow an edge path, the interior point methods 
follow the central path. Within this framework, the curvature of a polytope, defined as the largest possible total 
curvature of the associated central path, can be regarded as the continuous analogue of its diameter. In this talk 
we highlight links between the edge and central paths, and between the diameter and the curvature of a polytope. 
We recall continuous results of Dedieu-Malajovich-Shub, and discrete results of Holt and Klee and Klee and 
Walkup, as well as related conjectures such as the Hirsch conjecture, which was disproved by Santos in 2012. 
We also present analogous results dealing with average and worst-case behaviour of the curvature and diameter 
of polytopes, including a recent result of Allamigeon, Benchimol, Gaubert, and Joswig who constructed a 
counterexample to the continuous analogue of the polynomial Hirsch conjecture. Based on joint works with 
Tamás Terlaky (Lehigh), Feng Xie (Microsoft), and Yuriy Zinchenko (Calgary). 
  
Keywords Linear optimization - central path – interior-point methods – diameter – simplex methods – d-step 
conjecture 
 
Mathematics Subject Classification (2000) · MSC 90C05 - MSC 90C51 - MSC 90C27 - MSC 52C35 
 
1 Introduction :  
 
Rational decision-making through quantitative modelling and analysis is the guiding principle behind operations 
research, a field with several far-reaching applications in research and industry. Finding optimal allocations of 
resources, scheduling tasks, and designing prototypes are a few of the areas operations research is concerned 
with. In many cases, these problems can be formulated or approximated as linear optimization problems, which 
involve maximizing or minimizing a linear function over a domain defined by a set of linear inequalities. The 
simplex and primal-dual interior point methods are currently the most computationally successful algorithms for 
linear optimization. While the simplex methods follow an edge path, the interior point methods follow the 
central path. The algorithmic issues are closely related to the combinatorial and geometric structure of the 
feasible region. Within this framework, the curvature of a polytope, defined as the largest possible total 
curvature of the associated central path, can be regarded as the continuous analogue of its diameter. 
 
2 Conclusions :  
 
We highlight links between the edge and central paths, and between the diameter and the curvature of a 
polytope. We recall continuous results of Dedieu, Malajovich, and Shub, and discrete results of Holt-Klee and 
Klee-Walkup, as well as related conjectures such as the Hirsch conjecture, which was disproved by Santos in 
2012. We also present analogous results dealing with average and worst-case behaviour of the curvature and 
diameter of polytopes, including a recent result of Allamigeon, Benchimol, Gaubert, and Joswig who constructed 
a counterexample to the continuous analogue of the polynomial Hirsch conjecture 
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The Simplex Algorithm is NP-mighty

Yann Disser · Martin Skutella

Abstract We propose to classify the power of algorithms by the complexity of the problems that they
can be used to solve. Instead of restricting to the problem a particular algorithm was designed to solve
explicitly, however, we include problems that, with polynomial overhead, can be solved ‘implicitly ’ during
the algorithm’s execution. For example, we allow to solve a decision problem by suitably transforming
the input, executing the algorithm, and observing whether a specific bit in its internal configuration ever
switches during the execution.

We show that the Simplex Method, the Network Simplex Method (both with Dantzig’s original pivot
rule), and the Successive Shortest Path Algorithm are NP-mighty, that is, each of these algorithms
can be used to solve any problem in NP. This result casts a more favorable light on these algorithms’
exponential worst-case running times. Furthermore, as a consequence of our approach, we obtain several
novel hardness results. For example, for a given input to the Simplex Algorithm, deciding whether a
given variable ever enters the basis during the algorithm’s execution and determining the number of
iterations needed are both NP-hard problems. Finally, we close a long-standing open problem in the
area of network flows over time by showing that earliest arrival flows are NP-hard to obtain.

Keywords simplex method · network simplex · successive shortest path · NP-mightiness · earliest
arrival flow
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Towards a Complexity Theory for Black-Box Optimization

Anne Auger · Benjamin Doerr · Carola Doerr ·
Nikolaus Hansen · Timo Kötzing · Johannes Lengler ·
Jonathan Rowe

Abstract For most real-world optimization problems, designing efficient algorithms to compute optimal
or approximately optimal solutions is far from being feasible. In practice, such problems are therefore
typically solved by heuristics. To understand which heuristic is favorable in what situation, we are
interested in studying search heuristics from a theoretical perspective.

While analyzing the optimization times of search heuristics is by now one of the well established research
streams in the heuristic search community, not much is known on the intrinsic difficulty of optimization
problems when tackled by search heuristics. In a series of recent papers, the community has now started
to investigate so-called black-box complexity notions. The goal of black-box complexity theory is to show
that for a given problem a certain effort is necessary to solve it via heuristic search algorithms. That
is, black-box complexity focuses on providing lower bounds for the running time of heuristic search
algorithms. The difference to classical complexity theory is that in black-box optimization models an
algorithm learns about the problem at hand only by sampling and evaluating solution candidates. It does
not have any other access to the problem instance. In short, black-box complexity thus asks for how many
function evaluations are needed to solve a problem. This notion is well studied under different terms
(e.g., query complexity, decision tree complexity) outside of the search heuristics community, though not
with a focus of developing a complexity theory for heuristics.

In the context of analyzing search heuristics, several different black-box complexity notions exist. We
provide a short overview of the existing models, and show that the study of black-box complexity can
inspire the design of new search methods that seem to outperform commonly employed search strategies.

Keywords Black-Box Optimization · Randomized Algorithms · Performance of Search Heuristics

1 Black-Box Complexity

Randomized search heuristics like simulated annealing, evolutionary algorithms, or particle swarm op-
timization are among the most commonly employed algorithms for real-world optimization problems.
They are typically fast to implement, robust with respect to noise, and are observed to compute good
solutions in reasonable time.

While randomized search heuristics have been successfully applied to many challenging optimization
problems in both industrial and academic contexts, our theoretical understanding of these general-
purpose optimizers is much less developed. To date, most research in the theory of randomized search
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heuristics focuses on computing convergence rates (in continuous domains) or optimization times (in
discrete domains) for particular heuristics. Not much is known, however, about the intrinsic complexity
of optimization problems for black-box optimization methods like the search heuristics mentioned above.
One problem in quantifying this complexity is that the classical (e.g., Turing) complexity models are not
suitable to capture this difficulty appropriately: while these models typically assume that the algorithms
have full access to the concrete problem instance to be solved, black-box optimization algorithms do not
have access to the problem other than by sampling and evaluating search points. Since this observation
is relevant also in many other settings in theoretical computer science (e.g., in the learning and machine
learning communities), alternative complexity notions, so-called black-box (or query) complexity models,
have been developed. In the context of studying randomized search heuristics, however, these models
typically fall short in providing reasonable bounds, as they typically allow for highly problem-tailored
algorithms. Search heuristics, in contrast, often have very limited memory, use only relative and not
absolute function values to guide the search, do not use gradient information etc. For this reason, new
complexity notions need to be developed in this context.

We give a very brief sketch of the existing black-box complexity models in the search heuristics context
and discuss how we can use insights from black-box complexity theory to design new (and hopefully
more powerful) search heuristics.

In this summary, we focus on discrete optimization problems, but all models are meaningful also for
continuous optimization problems.

2 The Different Black-Box Models—An Overview

We present the different black-box notions. To illustrate the differences of the models, we shall always
consider the following simple problem, which we call the Hamming distance problem. For an unknown
bitstring z of length n, each function evaluation returns n minus the Hamming distance H(x, z) :=
|{i | xi 6= zi}| of the queried search point x and the unknown string z. That is, fz(x) is the number of
positions in which x and z agree. We are interested in maximizing fz, i.e., we want to identify z.

The unrestricted black-box complexity [5] of the Hamming distance problem is simply the smallest number
of samples x that have to be evaluated in order to identify z. It is known that this number is of order
n/ log n [6]. Typical randomized search heuristics (RSH), however, need Ω(n log n) function evaluations
to maximize fz. This and many similar examples therefore seem to suggest that the unrestricted black-
box complexity does not reveal the full truth about the difficulty of a problem when optimizing it with
randomized search heuristics.

One idea to overcome this discrepancy was already suggested in [5]: instead of allowing the algorithm to
store all previously queried search points, allow it to store only a certain number of previous search point
and its corresponding function value. This is the memory-restricted model. Unfortunately, it turns out
that this does not change the complexity of the Hamming distance problem. Even in the most restrictive
model, in which an algorithm can store only one previous solution, O(n/ log n) query algorithms are
possible [3].

An alternative idea to restrict the algorithms is to request that they should only use relative function
values in order to decide on the distribution from which they sample the next solution candidate. That
is, the algorithm may not make use of the absolute function values fz(x) but can merely use the fact that
fz(x1) ≥ fz(x2) ≥ . . . ≥ fz(xt) for the previously sampled search points x1, . . . , xt. Interestingly, while
this restriction increases the complexity of many problems, the complexity of the Hamming distance
problem remains unaffected, i.e., the ranking-based black-box complexity is again of order n/ log n.

If we combine the memory-restricted model with the ranking-based model, then the complexity of the
Hamming distance problem increases to linear in n (if only a constant number of previous samples and
their relative function values can be stored). This is the comparison-based model. Still it does not explain
why most search heuristics need Ω(n log n) function evaluations for maximizing fz.
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A breakthrough in the area of black-box complexity research was the so-called unbiased black-box com-
plexity model. In essence, it requires that all distributions from which new solution candidates are sampled
are symmetric with respect to the bit positions 1, . . . , n and the bit entries 0, 1. In addition, the unbiased
model allows to talk about the arity of the algorithms. If only one previously sampled search point deter-
mines the sampling distribution (the unary model), the best algorithm has complexity Ω(n log n) on the
Hamming distance problem [7]. That is, this complexity matches the runtime of the commonly studied
search heuristics. However, if two or more solution candidates can determine the sampling distribution,
this complexity drops to at most linear in n [2],[4]. Since many search heuristics do sample from more
than one search point, it is therefore an interesting question of whether this complexity can be achieved
by RSH. A partial answer to this question is the result described in the next section.

3 Learning from Black-Box Complexity Theory

An inspection of the algorithms yielding the upper bounds mentioned in Section 2 shows that all of them
greatly profit from sampling search points that are inferior to the current best solution. This is not what
typical search heuristics do—they typically discard inferior solutions immediately. In [1], a new genetic
algorithm is presented that experiments with a simple way of exploiting inferior solutions.

The key idea of the algorithm in [1] is to sample from the current best solution x a set of λ new solution
candidates that all have the same distance to x. The best one of those (which, if x is already close to an
optimal solution, often have smaller function value than x) is used for a recombination with the original
parent x. More precisely, denoting by y this best of the λ offspring solutions, y is recombined with x λ
times (using some standard recombination procedures). With reasonably large probability the best one
y′ of these newly created recombinations has better function value than x. If indeed f(y′) ≥ f(x), the
algorithm proceeds with x being replaced by y′, and it does not update x otherwise. This algorithm
solves the Hamming distance problem using only O(n

√
log n) function evaluations. (The tight bound,

in fact, is Θ(n
√

log(n) log log log(n)/ log log(n)).) While this is not optimal (O(n) algorithms exist), it
is the first example of a non-problem tailored algorithm exhibiting a runtime which is smaller than the
classic Θ(n log n) bound.

4 Future Work

Black-box complexity models offer a plethora of interesting and challenging open problems. Two examples
that we are planning to work on in the PGMO project are

1. Noisy settings: While all the results mentioned above hold in noiseless settings, it would be very inter-
esting to see how the stated complexity bounds change if the algorithms or the function evaluations
are subject to noise.

2. Elitist algorithms: typical search heuristics keep only the best solution candidates evaluated so far
and discard inferior solutions. To understand the influence of this elitist selection behavior, this greedy
selection should be reflected in a meaningful black-box complexity model.
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A Bayesian subset simulation approach to constrained global optimization of

expensive-to-evaluate black-box functions

Paul FELIOT · Julien BECT · Emmanuel VAZQUEZ

Abstract This paper addresses the problem of derivative-free global optimization of a real-valued func-
tion under multiple inequality constraints. Both the objective function and the constraint functions
are assumed to be smooth, nonlinear, expensive-to-evaluate black-box functions. As a consequence, the
number of evaluations that can be used to carry out the optimization is very limited. We focus in this
work on the case of strongly constrained problems, where finding a feasible design, using such a limited
budget of simulations, is a challenge in itself. The method that we propose to overcome this difficulty
has its roots in the recent literature on Gaussian process-based methods for reliability analysis—in par-
ticular, the Bayesian Subset Simulation (BSS) algorithm of Li, Bect and Vazquez—and multi-objective
optimization. More specifically, we consider a decreasing sequence of nested subsets of the design space,
which is defined and explored sequentially using a combination of Sequential Monte Carlo (SMC) tech-
niques and sequential Bayesian design of experiments. The proposed method obtains promising result in
a benchmark against state-of-the-art methods on challenging test cases from the literature.

Keywords Optimization · Kriging · Gaussian Process · Subset Simulation · Sequential Monte Carlo
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1 Context

This paper addresses the problem of derivative-free global optimization of a real-valued function under
multiple inequality constraints:

{

Minimize f(x),

Subject to x ∈ X and c(x) ≤ 0,

where f is the function to be minimized, X ⊂ R
d is the design space and c = (c1, . . . , cq) is the vector

of constraint functions, cj : X → R, 1 ≤ j ≤ q.

Both the objective function f and the constraint functions cj are assumed to be smooth, nonlin-
ear, expensive-to-evaluate black-box functions. More specifically, it is assumed that the values of f(x)
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and c(x), for a given x ∈ X, are provided simultaneously by a single call to some time-consuming com-
puter program—a setup that typically applies to industrial design problems, where numerical simulations
are used to mimic the actual physical behavior of the system to be designed. Such simulations may for
instance require fluid dynamic, heat transfer or mechanical deformation computations and can take from
a few hours to several days to compute.

The number of runs that can be afforded to carry out the optimization is therefore very limited. We
focus in this work on the case of strongly constrained problems, where finding a feasible design, using
such a limited budget of simulations, is a challenge in itself.

2 Proposed method

Global optimization methods have been investigated intensively for the last decades. When expensive-
to-evaluate functions are involved, cheap-to-evaluate approximations of the objective and constraints
functions—often referred to as surrogate models or meta-models—are classically relied upon. We adopt
here a Bayesian approach, which provides not-only natural surrogate models for the expensive-to-evaluate
functions that we have to deal with, but also an elegant framework to help design efficient optimization
algorithms. More precisely, the objective function f and the constraint functions cj are modeled as
(independent) Gaussian processes, following a now classical approach that has been made popular by
Jones et al. (1998) for unconstrained optimization problems. Subsequent developments for constrained
optimization problems have been proposed by, among others, Schonlau et al. (1998); Sasena et al. (2002);
Gramacy and Lee (2011); Parr et al. (2012); Picheny (2014a).

We focus on this paper on the case of strongly constrained problems, where the volume of the feasible
space is small compared to the size of the design space. As a consequence, locating even a single feasible
point becomes difficult and most existing Bayesian optimization methods, which require at least one
feasible point to begin with, fail to be applicable. The method that we propose to overcome this difficulty
has its roots in the literature on Bayesian sequential design of experiments for reliability analysis (see, e.g.,
Bect et al., 2012; Li et al., 2012)—estimating a failure region or a feasible set are very similar problems—
and multi-objective optimization (see, e.g., Emmerich et al., 2006; Wagner et al., 2010; Picheny, 2014b).
More specifically, we consider a decreasing sequence of nested subsets of the design space, which is
defined and explored sequentially using a combination of Sequential Monte Carlo (SMC) techniques and
sequential Bayesian design of experiments, in the spirit of Li et al. (2012); Benassi et al. (2012); Li
(2012); Benassi (2013).

3 Results and future work

We are able to report good results on challenging test cases from the literature compared with state-
of-the-art methods. Future work will include the extension of our method to multi-objective problems
and the optimization of various aspects of our algorithm (Sequential Monte Carlo algorithm, sampling
criterion...). Simulation failures should also be taken into account as they are inherent to complex
industrial simulation codes. The performance of the method will be evaluated on a real-life industrial
problem provided by Safran, with the contribution of Cenaero (optimization of the performances of a
turbo-machine fan blade under aerodynamic, mechanic and acoustic constraints).
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Linear decision rules applied to hydropower scheduling

Stein-Erik Fleten · Ida Grønvik · Ajla Hadziomerovic ·
Nina Ingvoldstad

Abstract Hydropower scheduling is cast as a multistage stochastic linear program, and we discuss the
feasibility of applying linear decision rules for solving this problem. This approach restricts the control
variables to be affine functions of current and past observations of the uncertain parameters, and the
original problem is transformed into a tractable one with short computing time. This overcomes obstacles
in traditional approaches which suffer from a computing effort that grows exponentially with the number
of stages and the number of state variables. In our case, a price-taking producer wants to determine a
reservoir management strategy over one to two years, aiming to maximize expected profit subject to
uncertainty in reservoir inflows and electricity spot market prices. The approach is demonstrated on
four Norwegian hydropower plants. We find that the approach is effective at reducing computational
complexity, and is well-suited to multistage hydro scheduling.

Keywords Robust optimization · affinely adjustable robust counterpart
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1 Introduction

The challenge of optimally releasing water for power production from hydroelectric reservoirs is a well-
known problem both in literature and practice. We focus on scheduling of releases in view of maximizing
expected electricity market revenues, under uncertainty of inflows and spot prices. The objective is to
investigate the feasibility of using linear decision rules, which is an approximation method for solving
stochastic programming problems.

The hydroelectric scheduling problem is often divided in three tasks with increasing degree of detail and
different scheduling horizon; long-term, seasonal and short-term scheduling [3,13,1]. Here we consider
long-term scheduling, whose aim is optimal allocation of the water resources with a time horizon of one
to five years. Long-term scheduling is a form of strategic reservoir management, and gives boundary
conditions to the seasonal or short-term tasks [11].
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(a) Plant 1 (b) Plant 2 (c) Plant 3 (d) Plant 4

Fig. 1: Topology of power plants in this study.

We specify stochastic sub-models for electricity spot prices and river inflows in order to provide input
for the long-term scheduling. Parameters for these dynamics are set based on historical spot price time
series, forward and futures prices and historical inflow data provided by four Norwegian hydropower
producers, cf. Fig. 1.

The classical approach to the reservoir operation problem under uncertainty is stochastic dynamic pro-
gramming [9]. However, the size of problems grows exponentially with the number of state variables,
i.e. the number of reservoirs, inflow trend/level states and price trend/level states. A common step
in approaches for solving stochastic hydropower scheduling problems is to approximate the underlying
stochastic process of the uncertain parameters to be discrete, with a finite set of values for the random
variables to take on. A prevalent approach is Benders decomposition, in particular, stochastic dual dy-
namic programming [7]. A comparison between stochastic dynamic programming and stochastic dual
dynamic programming is in [8]. According to [5], the ability to generate good scenario trees is highly
dependent on the knowledge of the underlying stochastic process. As the probability distribution of the
uncertain parameters is rarely known, all of the above approaches rely on quite brave simplifying as-
sumptions in order to achieve tractability. The size of scenario-tree-based problems grows exponentially
with the number of time stages.

Stochastic programs must be simplified in order to gain computational tractability [6]. The linear decision
rules (LDR) approximation involves restricting the recourse decisions associated with the stochastic
program to be functions of the realisations of the uncertain parameters. Following [2], the uncertain
parameters are assumed to be within an interval around their expected values, in which the size of
the interval is given by the level of uncertainty. By applying the LDR approach, the original stochastic
program is converted into a semidefinite program. In the case of fixed recourse, provided that the
uncertainty set itself is computationally tractable, this derived program is computationally tractable as
well. In the case of a polyhedraluncertainty set, the fixed recourse program is equivalent to a linear
program. Although the LDR approach is effective at reducing computational complexity, it may incur a
considerable loss of optimality. By applying the approximation to both the primal version and the dual
version of the original problem, this loss of optimality can be estimated by the gap between the optimal
objective values of the two programs [6].

The contribution of this work is the development of a multistage stochastic hydropower scheduling model
based on the LDR approximation. Currently, there are few studies in this ([12,4,10]). To evaluate the
applicability of the approximation to the long-term scheduling problem, the LDR will be demonstrated on
four Norwegian hydropower plants. Focus will also be on how uncertainty in price and inflow affects the
problem and how the flexibility of the hydropower plants relates to the reservoir management strategies
given by the optimization.
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2 Conclusions

We develop a multistage stochastic model for hydropower scheduling, in the framework of an LDR ap-
proximation. The random variables are restricted to vary within an interval around their expected values,
in which the sizes of the intervals are given parametrically. Using data from four different hydroelectric
facilities in Norway, we demonstrate that increasing the interval sizes for inflows causes more restrictive
reservoir management strategies. We also show that more restrictive strategies are rational for plants
with less flexibility compared to plants with more flexibility. The problem is feasible only up to a cer-
tain inflow interval size, depending on the flexibility of the hydropower plants and on the length of the
scheduling horizon.

We compare the performance of the LDR approximation to the corresponding deterministic problem,
using a ten year simulation for one of the hydropower plants. This is a back-test using the realisations of
price and inflow in the years 2002 to 2012, and both models are rerun every fourth week with updated
initial reservoir levels. At an interval size of 10 % the LDR model is shown to give an average price per
released MWh that is 11.5 NOK higher than the price given by the deterministic model. The main
reason for this result is the ability of the LDR model to adjust production to the realisations of price
and inflow.

The complexity reduction in the the LDR approximation leads to acceptable computing effort. When
solved for 104 time stages, the LDR model has a run time of 268 seconds. This implies that the model
can be rerun whenever new information about price and inflow is available. As a result, the model is
able to provide updated boundary conditions to a shorter term model more frequently than models with
longer computation times. In conclusion, we consider the LDR approximation a promising alternative
for multistage stochastic hydropower scheduling problems.

Acknowledgements The authors would like to thank the electricity producers for graciously providing the data. We
recognize the Norwegian research centre FME CenSES, Centre for Sustainable Energy Studies (RCN grant 209697), and
Fleten acknowledges financial support from the Research Council of Norway through project 228811.

References

1. Ellen K. Aasgard, Gørild S. Andersen, Stein-Erik Fleten, and Daniel Haugstvedt. Evaluating a stochastic-programming-
based bidding model for a multireservoir system. IEEE Trans. Power Systems, 29(4):1748–1757, 2014.

2. Aharon Ben-Tal, Alexander Goryashko, Elana Guslitzer, and Arkadi Nemirovski. Adjustable robust solutions of
uncertain linear programs. Mathematical Programming, 99(2):351–376, 2004.

3. O. B. Fosso, A. Gjelsvik, A. Haugstad, B. Mo, and I. Wangensteen. Generation scheduling in a deregulated system.
The Norwegian case. IEEE Trans. Power Systems, 14(1):75–81, 1999.

4. Vincent Guigues. Robust production management. Optimization and Engineering, 10(4):505–532, 2009.
5. M. Kaut and S. W. Wallace. Evaluation of scenario generation methods for stochastic programming. Pacific Journal

of Optimization, 3(2):257–271, 2007.
6. Daniel Kuhn, Wolfram Wiesemann, and Angelos Georghiou. Primal and dual linear decision rules in stochastic and

robust optimization. Mathematical Programming, 130(1):177–209, 2011.
7. M. V. F. Pereira and L. M. V. G. Pinto. Multi-stage stochastic optimization applied to energy planning. Mathematical

Programming, 52(2):359–375, 1991.
8. Andy Philpott, Anes Dallagi, and Emmanuel Gallet. On cutting plane algorithms and dynamic programming for

hydroelectricity generation. In R. Kovacevic, G. Pflug, and M. T. Vespucci, editors, Handbook of Risk Management in
Energy Production and Trading, volume 199 of International Series in Operations Research & Management Science,
pages 105–127. Springer, 2013.

9. G. Pritchard, A.B. Philpott, and P.J. Neame. Hydroelectric reservoir optimization in a pool market. Mathematical
Programming, 103(3):445–461, 2005.

10. Paula Rocha. Medium-Term Planning in Deregulated Energy Markets with Decision Rules. PhD thesis, Imperial
College London, 2012.

11. S. Stage and Y. Larsson. Incremental cost of water power. AIEE Trans. Power Apparatus and Systems, 80:361–365,
1961.
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Abstract Lagrangian relaxation is a powerful technique for deriving strong lower bounds for hard com-
binatorial problems. However, its use typically brings to difficult decisions: on one hand, the Lagrangian
subproblems need be “hard” for the bound to be good, but on the other hand they have to be solved
many times, and therefore one has to do this quickly. It is therefore helpful in many applications to
be able to solve the subproblems only approximately, at least in some (hopefully, most) iterations of
the approach; this is indeed possible, and the convergence theory of inexact approaches, in particular
of the well-known Bundle type, has been recently perfected. The convergence proofs leave ample scope
for different implementation; in particular, there are different ways in which inexact data can be used
in Bundle algorithms, and the parameter that dictates the degree of accuracy in each solution of the
Lagrangian problem can be handled in several different ways. Our aim is to explore a large set of these
variants on a significant set of hard optimization problems with different characteristics, in order to
develop guidelines for choosing the best strategy (the one providing the best solution in the shortest
possible running time) in accordance with the features of the problem at hand.
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1 Introduction

Most optimization problems arising in applications, such as logistics, telecommunications, and energy,
are very hard to solve; this is typically the combination of different factors, among which the sheer
scale of the problem (number of variables and constraints) and the presence of nonconvex features,
most often under the guise of integer variables. While some problems have both these features, often
one of them alone is enough to make the problem intractable computationally; for instance, two-stage
stochastic linear programs would theoretically be “easy” ones, but their size explodes with the number
of scenarios, that has to be kept large for the results to be statistically significant. On the other hand,
relatively small-scale integer programs can nonetheless be extremely hard to solve.
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Linear programming based techniques have made tremendous improvements in the last 10 or 20 years
alone; this, together with advances in strengthening the continuous relaxation of the formulations, e.g. by
valid inequalities, makes it possible nowadays to routinely solve problems that would have been in-
tractable only a few years ago. However, there still comes a threshold where problems can only be
tackled by the use of specialized techniques that exploit valuable structure information. This is, for
instance, very true for many problems arising in energy optimization, see e.g. [10][11, §3.3].

Lagrangian relaxation (or its “primal cousin”, Benders’ decomposition) is widely used approaches be-
cause it only relies on very general structural properties for the problem at hand, namely the presence
of “complicating constraints” (variables) whose removal (fixing) leaves a much easier problem to solve.
This is often in large part due to the fact that the problem decomposes into a (large) set of independent
(much) smaller problems, that may then either be below the size threshold where general-purpose tech-
niques work well, or allow specialized approaches (see e.g. [3] for one of the very many cases). However,
the standard theory of Lagrangian relaxation for combinatorial optimization problems (e.g. [2]) reveals
an unpleasant truth: a “no free lunch” principle applies, where in order for the bound to improve,
e.g. w.r.t. that of the ordinary continuous relaxation, the subproblems need necessarily be “difficult”.
The algorithm designer hence has to confront a difficult decision in order to rightly balance the diffi-
culty of the subproblems, and therefore the quality of the obtained solution, with the total running time
devoted to their solution.

One helpful idea in many applications is to solve the subproblems only approximately. For Lagrangian
relaxation of combinatorial problems this “just” amounts at early terminating the solution process of the
Lagrangian subproblem, most often of a Branch&Something type; this provides the best solution found
so far, which yields a linearization of the Lagrangian function, as well as an estimate of the gap with the
optimal one. For stochastic programs, instead, one possibility is to artificially restrict the subproblem to a
small subset of the original large set of scenarios [9]. Both cases result in an approximate computation of
the objective function, that has been shown to be possible, in particular for solution methods belonging
to the class of Bundle approaches [1,4,5]; lately, convergence theory has been perfected [7,8].

The recent version of the convergence analysis shows that there is ample scope for different implemen-
tations; so far, however, little is known about the practical impact of these different choice. Aim of this
work is to explore a large set of this variant on a significant set of hard optimization problems with
different characteristics, in order to develop guidelines for choosing the best strategy (the one providing
the best solution in the shortest possible running time) in accordance with the features of the problem
at hand.

2 Testing Inexact Bundle Methods

In terms of the general convergence theory [8], the inexact oracles we will consider, coming from either
Lagrangian relaxation of integer programs or from two-stage stochastic programs, cover only some of the
possibilities; in particular, they are all both lower (in the sense that the linearizations provide reliable
underestimates of the objective function) and controllable (in the sense that in principle the accuracy
can be brought to zero, albeit possibly at a very large cost). Bundle methods are known to work even
under less stringent assumptions. Furthermore, as already discussed Lagrangian oracles may produce,
as a natural by-product of the solution process (i.e., at no extra cost), explicit estimates of the obtained

accuracy. However, even with these properties, there are several different ways in which inexact data can
be used in Bundle algorithms.

For a start, there are two different approaches about the handling of inexact information in Bundle
methods; in particular, one may or may not use the information about the attained accuracy in the
solution of the Lagrangian problem, when this is available. Furthermore, the degree of accuracy in each
solution of the Lagrangian problem can be handled in several different ways, depending e.g. on:

– whether the accuracy is controlled by the Bundle algorithm, or by the oracle;
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– whether or not the parameter that dictates the accuracy is set according to the current estimate
produced by the Bundle algorithm of the distance between the current solution and the optimal one;

– whether the accuracy parameter is continuously reduced, or this is only done when the algorithm
detects that it would otherwise “stall”;

– whether the accuracy parameter is reduced according to the number of iterations of the algorithm,
or only of the “successful” ones (the so-called “serious steps”);

– whether the accuracy parameter is monotonically non increasing or it is “reset” after successful
iterates as proposed in [6].

All these issues produce algorithmic parameters, whose tuning will provide insight on what the best
strategies are. In order to reach conclusions with a good degree of generality, our tests will be performed
on a variety of different problems, such as:

– capacitated lot-sizing problems;
– cutting stock problems;
– multicommodity network design problem;
– unit commitment problem;
– two-stage stochastic linear problems;
– vehicle routing problems.

Each of these problems has a specific combination of the main relevant factors, such as the number of
Lagrangian multipliers and whether or not they are constrained in sign, the number of subproblems
arising from the decomposition and their “difficulty”. By testing on such a diverse set we will be able to
start drawing guidelines for choosing the best strategy (the one providing the best solution in the shortest
possible running time) in accordance with the features of the problem at hand. These will hopefully show
that inexact Bundle methods, when the accuracy of the subproblem solution is properly dynamically
handled, can be a competitive option for the solution of large-scale and/or difficult optimization problems.

Acknowledgements We gratefully acknowledge the financial support of the Gaspard Monge program for Optimization
and Operations Research under the project “Consistent Dual Signals and Optimal Primal Solutions”.
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or unbounded. The goal of this talk is twofold. First, it describes how the augmented Lagrangian (AL)
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with C++/Matlab implementations of that algorithm in codes called Oqla/Qpalm.

Keywords Augmented Lagrangian algorithm · augmentation parameter update · closest feasible
problem · convex quadratic optimization · feasible shift · global linear convergence · infeasible problem ·

proximal point algorithm · quasi-global error bound · shifted constraint.

Mathematics Subject Classification (2000) 49M27 · 49M29 · 65K05 · 90C05 · 90C06 · 90C20 ·

90C25

1 Introduction

To simplify the presentation, we consider a convex quadratic optimization problem written as follows

infx {q(x) : l 6 Ax 6 u}. (1)

In that problem, the objective function

q : x ∈ R
n
7→ q(x) = gTx+

1

2
xTHx

is convex quadratic (g ∈ R
n and H ∈ R

n×n is positive semidefinite), the constraints are defined by
a matrix A ∈ R

m×n and bounds l and u ∈ R
m

that must satisfy l < u, and the sign “T” denotes
transposition. We introduce the interval [l, u] := {y ∈ R

m : l 6 y 6 u}. Since H may vanish, the problem
encompasses linear optimization.
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Solving a problem like (1) may look quite easy, in particular due to its assumed convexity; one may
believe that the problem has been fully explored in the 20th century. However, if the standard QP solver
Quadprog of Matlab (version R2012a (7.14.0.739) 64-bit (maci64)) is run on the bound constraint
convex QP with the data

g =





1
1
0



 , H =





1 0 0
0 4 2
0 2 1



 , the single constraints x >





−1
−1
−1



 ,

and the option ’LargeScale’ set to ’off’ (this one triggers an active-set method; the default is ’on’
and launches the reflective trust-region method of [3]), it returns a message containing the lines

Exiting: the solution is unbounded and at infinity;

Function value: 3.20000e+33

while the problem is uniquely solved by x = (−1,−1, 2) with the optimal value −1.5. This is a benign
flaw, probably due to the singularity of the positive semidefinite Hessian and rounding errors, since if one
adds εI (ε = eps is the machine epsilon) to the Hessian, Quadprog with the same options finds a solution
very close to the one of the unperturbed problem. Nevertheless, like many other QP solvers, in case of
an infeasible or unbounded problem, Quadprog does not give other information than an infeasibility or
unboundedness flag, which is unfortunate since there is much more to say in these circumstances.

On the other hand, the more recent interior point solvers Ooqp [9] and Qpb fail to solve more than 50%
and 20%, respectively, of the 135 convex QPs in the CUTEst [12] collection in a reasonable time (and
solve the other ones very quickly), which shows that these problems are not that trivial.

The goal of this work, based on [4,2] and further detailed in [10], is to explore the numerical abilities of
an AL algorithm to solve the convex QP (1). This approach is rarely used ([7] is an exception), despite
some of its nice features, which should guarantee it with the application niche that is described below.

2 The AL algorithm for a convex QP

The AL algorithm is defined by first introducing an auxiliary vector of variables y ∈ R
m and by rewrit-

ing (1) as follows
inf(x,y) {q(x) : Ax = y, l 6 y 6 u}. (2)

Given an augmentation parameter r > 0, the AL function ℓr : Rn × R
m × R

m → R is then defined at
(x, y, λ) ∈ R

n × R
m × R

m by

ℓr(x, y, λ) = q(x) + λT(Ax− y) +
r

2
‖Ax− y‖2,

where ‖ · ‖ denotes the ℓ2-norm. For r = 0, one recovers the usual Lagrangian function, relaxing the
equality constraints of (2) thanks to the multiplier or dual variable λ. The AL algorithm generates a
sequence of dual variables {λk}k∈N ⊂ R

m, which are aimed at converging to a dual solution to (1), as
follows. Knowing rk > 0 and λk ∈ R

m, the next dual iterate λk+1 is computed by

(xk+1, yk+1) ∈ argmin {ℓrk(x, y, λk) : (x, y) ∈ R
n
× [l, u]} , (3)

λk+1 := λk + rk(Axk+1 − yk+1),

where “argmin” denotes the set of minimizers of the problem on which it applies. Next, rk is updated
by a rule that depends on the implementation and to which we pay much attention in [4,2,10]. The QP
in (3) is called the AL subproblem.

The salient features of the AL algorithm just described, which specify the contour of its application
niche, are

r it does not require any matrix factorization, so that it can be used for large scale problems,

http://www.mathworks.fr/fr/help/optim/ug/quadprog.html
http://www.mathworks.fr/fr/help/optim/ug/quadprog.html
http://www.mathworks.fr/fr/help/optim/ug/quadprog.html
http://pages.cs.wisc.edu/~swright/ooqp
http://www.galahad.rl.ac.uk/
http://www.cuter.rl.ac.uk/


3

r it uses an active set method on the bound constrained AL subproblems (3) that it generates, so that
it is likely to be more efficient when an estimate of the active constraints at the solution is known,
like for the QPs generated by the SQP algorithm [1],

r it can provide precious information when the considered problem is infeasible or unbounded; this
information can be useful when the QP solver is viewed as a tool in nonlinear optimization.

3 Global linear convergence results

This work on the behavior of the AL algorithm on an infeasible QP can be viewed as a continuation of the
one initiated in [4], in which the global linear convergence of the constraint norm to zero is established,
when (1) has a solution. More specifically, it is shown in [4] that in this case:

∀β > 0, ∃L > 0, dist(λ0,SD) 6 β implies that
∀ k > 1, ‖Axk+1 − yk+1‖ 6

L
rk

‖Axk − yk‖,
(4)

where SD denotes the necessarily nonempty set of optimal multipliers associated with the equality con-
straints of (2) and the operator “dist” denotes the Euclidean distance. Computationally, this result is
interesting because it allows the AL algorithm to tune the augmentation parameter rk on the basis of the
observed behavior of the constraint norm ratio ‖Axk+1−yk+1‖/‖Axk−yk‖, from the very first iteration.
For example, rk can be increased when this ratio is larger than a desired rate of convergence (this rate
is easier to prescribe by the solver user than rk). Now, when the problem is infeasible, the constraint
norm cannot, of course, tend to zero and the just described rule for tuning rk makes the augmentation
parameters blow up.

In [2], we give more properties on the AL algorithm when problem (1) is infeasible, with the aim at
improving its stopping criterion and augmentation parameter update rule. Since, the AL algorithm is
equivalent to the proximal algorithm on the dual function, these results are related to those on the
behavior of the proximal method on monotone inclusion problems without solution (Bruck, Eckstein,
Reich, Rockafellar, Silva, Spingarn, and others), but it goes a little further, by taking advantage of the
special structure of the quadratic optimization problem (1). The result makes use of the notion of feasible
shift, which is a vector s that makes l 6 Ax+ s 6 u feasible for x. The nonempty set of feasible shifts is
denoted by S and the smallest feasible shift is denoted by s := argmin{‖s‖ : s ∈ S}. Of course, s = 0 if
and only if the QP is feasible. The closest feasible problem is the feasible problem defined by

infx {q(x) : l 6 Ax+ s 6 u}. (5)

It is shown in [2] that, provided (5) has a solution, the following extension of (4) holds:

∀β > 0, ∃L > 0, dist(λ0, S̃D) 6 β implies that
∀ k > 1, ‖sk+1 − s‖ 6 L

rk
‖sk − s‖,

(6)

where S̃D is the set of dual solutions to (5). This is quite similar to (4), except that sk := yk − Axk no
longer converges to zero but to s. A difficulty occurs, however, when one tries to use the estimate (6)
to tune the augmentation parameter rk, since s is not known before solving problem (1). A bypass can
be realized by observing the behavior of s′k := sk+1 − sk, which converges to zero, instead of that of sk,
yielding an update rule for the augmentation parameter rk, which maintains it bounded, even when the
problem is infeasible.

4 Numerical implementation

The second part of the talk will present the numerical results obtained with two implementations of
the above AL algorithm for solving convex quadratic optimization problems [10]. The code Oqla is
implemented in C++, which results in a fast and flexible solver. Flexibility means here that the solver is
able to deal with various data representations, such as the dense, sparse, or ℓ-BFGS formats, in a manner
similar to [9]. The code Qpalm is implemented in Matlab, which is slower but offers the possibility to
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have a fair comparison with the Matlab solver Quadprog (Oqla and Qpalm are comparable in terms
of iteration counters) and to make easier the experimentation of new ideas and features. Performance
profiles [6] will compare the efficiency of Oqla/Qpalm to active set solvers (like Quadprog or Qpa from
Galahad [11]) and interior point solvers (like Ooqp [9] or Qpb from Galahad [11]).

The Oqla/Qpalm solvers have also the nice features of terminating with one of the two following exclu-
sive possibilities: either (i) the closest feasible problem (5) is unbounded, in which case a direction of
unboundedness is provided, or (ii) a solution to the closest feasible problem (5) is found, in which case
s is also determined. A direction of unboundedness is a direction d ∈ R

n such that

gTd < 0, Hd = 0, and Ad ∈ [l, u]∞, (7)

where [l, u]∞ denotes the asymptotic cone of [l, u]. Such a direction always exists when the closest feasible
problem is unbounded. This termination data is rarely provided by the other QP solvers, while it is very
useful, for instance, to give a precise description of the QPs generated by the SQP algorithm [1].

Let us conclude by giving some features of Oqla/Qpalm:

r the implementation language is C++/Matlab, respectively;
r they can solve convex quadratic optimization problems;
r the augmented Lagrangian (AL) algorithm is used to solve the QPs;
r the AL subproblems (3) are solved by an active-set method with Rosen’s inactivation technique [13,
8] to avoid exploring completely the unlikely optimal activated faces;

r the linear systems are solved by the preconditioned conjugate gradient algorithm; the preconditioners
take into account the activation/inactivation of the bounds and inequality constraints; they can be
diagonal or Cholesky-like (in each case the singularity of the augmented Hessians is dealt with);

r when the problem is unbounded, the solvers provide a direction of unboundedness d, satisfying (7);
r when the problem is infeasible, the solvers return a solution to the closest feasible problem (5);
r Oqla is currently distributed under the GPL license and Qpalm under the QPL license.

According to our experience in [5], these features make Oqla/Qpalm well adapted to an insertion into an
SQP solver.
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Context	  

Power	  transmission	  projects	  are	  of	  particular	  importance	  for	  countries	  in	  the	  European	  
Union,	  in	  an	  energy	  context	  including	  more	  and	  more	  renewable	  energies	  and	  extending	  
the	  coupling	  of	  its	  power	  markets.	  In	  particular,	  interconnections	  allow	  for:	  

§ ensuring	   better	   security	   of	   supply	   between	   countries	   and	   more	   generally	   between	  
geographical	  areas;	  

§ a	  facilitated	  access	  to	  the	  electricity	  market	  to	  various	  stakeholders;	  
§ an	  increased	  value	  of	  economic	  surplus	  on	  the	  European	  perimeter;	  
§ a	   more	   efficient	   integration	   of	   intermittent	   renewable	   energy,	   allowing	   them	   better	  

expansion	  and	  larger	  distribution	  of	  the	  energy	  they	  produce.	  

To	   evaluate	   the	   cost	   of	   these	   projects,	   most	   EU	   countries,	   through	   their	   network	  
operators,	  have	  developed	  their	  own	  calculation	  methods.	  Moreover,	  ENTSO-‐E1,	  for	  the	  
realization	   of	   its	   Ten	   Year	   Network	   Development	   Plan	   (TYNDP),	   has	   developed	   and	  
published	  a	  common	  methodology	  among	  TSOs.	  
The	   proposed	   cost-‐benefit	   analysis	   consists	   in	   evaluating	   the	   total	   economic	   surplus	  
generated	  over	  Europe,	  with	  or	  without	  a	  new	  piece	  of	  infrastructure.	  The	  evaluation	  of	  
this	   surplus	   means	   solving	   an	   optimal	   dispatch	   problem,	   where	   power	   mixes	   in	  
countries	   are	   represented	   by	   technology	   fleets	   in	   zones,	   connected	   by	   power	  
transmission	   capacities.	   It	   is	   already	   used	   by	   TSOs	   and	   regulators	   to	   evaluate	   the	  
interest	  of	  new	  transmission	  capacities	  between	  zones	  in	  Europe.	  

Artelys	  

1	  European	  Network	  of	  Transmission	  System	  Operators	  for	  Electricity	  



	  
Artelys	   is	  a	  French	   independent	  company	  which	  specializes	   in	  numerical	  optimization,	  
applied	   to	   various	   fields:	   energy,	   transport,	   defense,	   finance.	   Artelys	   often	   delivers	  
studies	   to	   industrials,	   regulators	   or	   transmission	   system	   operators	   on	   the	   topic	   of	  
techno-‐economical	  valuation	  of	   interconnection	  projects.	  For	   this	  purpose,	  Artelys	  has	  
developed	  for	  almost	  ten	  years	  a	  simulation	  platform,	  called	  Artelys	  Crystal,	  dedicated	  to	  
the	  energy	  systems.	  
	  
The	  talk	  
	  
The	   presentation	   will	   give	   a	   flavor	   of	   the	   newest	   developments	   introduced	   in	   our	  
simulation	   platform:	   the	   capability	   to	   optimize	   the	   capacities	   of	   the	   energy	   mix	  
(transmission,	   storage,	   production)	   jointly	   with	   the	   solving	   of	   the	   optimal	   dispatch	  
problem	   on	   an	   hourly	   basis	   over	   the	   year.	   Within	   the	   POST	   project,	   a	   4M€	  
“Investissements	   d’avenir”	   project	   funded	   by	   ADEME2 	  and	   leaded	   by	   Artelys,	   we	  
collaborate	   with	   INRIA	   in	   the	   development	   of	   cutting-‐edge	   algorithms	   for	   solving	  
capacity	   expansion	   problems	   on	   a	   large-‐scale	   (European-‐wide)	   while	   keeping	   the	  
underlying	   power	   dispatch	   problem	   intact	   (simulation	   of	   the	   production-‐demand	  
equilibrium	  on	  an	  hourly	  basis).	  
	  
This	  talk	  aims	  at	  explaining	  how	  optimization	  models	  are	  used	  in	  order	  to	  evaluate	  and	  
rank	   interconnection	   projects	   together.	   There	   is	   a	   strong	   emphasis	   on	   the	   indicators	  
used	   to	   perform	   the	   study.	   Not	   only	   production	   and	   investment	   costs	   are	   to	   be	  
considered,	   but	   also	   more	   difficult	   constraints	   like	   security	   of	   supply	   concerns	   for	  
countries.	  We	  base	  it	  on	  a	  concrete	  example	  of	  a	  recent	  study	  led	  at	  Artelys	  on	  the	  topic.	  
	  

	  
	  

Figure	  1-‐	  Example	  of	  a	  recently	  led	  study	  on	  the	  valuation	  of	  new	  transmission	  capacities	  across	  the	  
Mediterranean	  

 
 
Alice Chiche, Pierre Girardeau, Peio Lahirigoyen, Arnaud Renaud 
12, rue du Quatre Septembre 
Tel.: +33-(0)1 44 77 89 00 
Fax: +33-(0)1 42 96 22 61 
E-mail: alice.chiche@artelys.com, pierre.girardeau@artelys.com, peio.lahirigoyen@artelys.com, arnaud.renaud@artelys.com  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  French	  Environment	  and	  Energy	  Management	  Agency	  



PGMO - COPI’14 

Natural Evolution Strategies for Direct Search

Tobias Glasmachers

Abstract Keywords evolutionary optimization, information geometry, direct search, randomized,
rank-based

Mathematics Subject Classification (2000) MSC 49M37 · MSC 65K05 · MSC 90C15

1 Introduction

Randomized direct search heuristics are a class of optimization methods well suited for black-box opti-
mization. Consider the general problem min f(x) for x ∈ X where f is a black-box: its analytical form
is unknown. It can be thought of either as the result of a complex computer simulation with parameters
x to be tuned to a goal encoded by f , or even as a measurement obtained from an actual physical
experiment. Each simulation run or experiment is costly (e.g., time intensive), and derivatives are not
available. The objective function may be non-differentiable and even discontinuous, and evaluations may
even be noisy.

2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a sub-class of randomized direct search algorithms that mimic prin-
ciples of Darwinian evolution theory. They operate on a population (set) of individuals (solutions)
x1, . . . , xµ ∈ X. At all times the algorithm maintains a parent population. In each generation (iteration)
the algorithm creates an offspring population x′

1
, . . . , x′

λ ∈ X by means of randomized variation oper-
ators, often by first applying a recombination (or “crossover”) operation mixing or merging properties
of multiple parents, followed by a mutation step. This process of building new solutions from (relatively
successful) current ones realizes the Darwinian principles of inheritance and variation. The final step is
selection (“survival of the fittest”): since an EA usually aims for a fixed size memory footprint it reduces
the two populations formed by parents and offspring to the size of the original parent population. This
step is where EAs differ considerably from their biological counterpart. Selection pressure is not created
by a dynamically changing environment with limited resources. Instead the selection process is based

Tobias Glasmachers
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on the (relative) objective function values of the individuals. Hence in an EA the objective function is
often called fitness function. Individuals with better fitness are granted higher changes to survive and to
reproduce, driving the population as a whole towards better regions of the search space.

From an optimization perspective this process implements randomized direct search. The variation opera-
tors introduce random, undirected variations. They explore new, hopefully better solutions. The selection
operator prefers better solutions, which amounts to exploitation. In contrast to many other classes of
optimization algorithms EAs usually do not make direct use of objective function values. These values
are solely used for pairwise comparisons and for ranking of solutions. Thus, a rank-preserving (strictly
monotonically increasing) transformation of objective values does not impact the optimization. In other
words, the objective function is “perceived” only in terms of its level sets. This is a strong invariance
property of rank-based algorithms.

3 Evolution Strategies

Evolution strategies (ESs) were introduced by Rechenberg in the 1970s [7]. This class of evolutionary
algorithms is specialized to optimization on the domain X = R

d. ESs are characterized by stringent
selection schemes (keeping the best µ individuals in each generation, either from the offspring or from
the union of parents and offspring), as well as by their emphasis on mutation (as opposed to crossover)
as a variation operator. Mutation is realized by adding a Gaussian random vector z ∈ R

d, z ∼ N (0, σ2I).
A key property of ESs is step size control: the variance σ2 of the mutation operator is adapted online
during the optimization run. This property allows for linear convergence on all scale invariant problems
(where the level sets are scale-invariant around the optimum, e.g., convex quadratic functions and hence
in arbitrarily good approximation local optima of C2 functions).

The modern default ES is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [5]. This
algorithm does not only adapt the overall variance but instead the full covariance matrix of the mutation
distribution N (0, C), C ∈ R

d×d symmetric and positive definite. Intuitively this is equivalent to online
learning of a suitable linear transformation of the search domain X = R

d such that the problem becomes
as well-conditioned as possible. Hence CMA-ES converges on all convex quadratic problems not only
at a linear rate, but rather (nearly) with the best such rate over the whole problem class. CMA-ES
and many variants thereof has been benchmarked on a large testbed of problems against a large set
of competitors within the Black-Box Optimization Benchmarking (BBOB) competition. It has shown
excellent performance over a wide range of problems [1].

4 Information Geometry

The classic perspective on an EA is that (the key part of) its algorithm state is given by the population
x1, . . . , xµ. A more modern perspective is to consider the distribution N (m,C) from which offspring are
drawn (m is a weighted mean of the parent population, which is the result of recombination). Hence the
algorithm state is a distribution, which evolves iteratively within the statistical manifold of Gaussian
distributions with parameters θ = (m,C).

With θ being the new algorithm state it makes sense to consider optimization of θ instead of x, for
example by minimizing

min
θ

Wf (θ) = Ex∼N (θ)

[

w
(

f(x)
)

]

where w : R → R is a monotonic weight function [6] (in the simplest case the identity). Under weak
assumptions the objective function Wf is continuous and nearly everywhere differentiable. It can be
minimized with gradient methods. The gradient involved integration of f and is hence intractable in
the black-box setting, however, it can be efficiently approximated with a Monte Carlo estimator. The
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estimated gradient is randomized, hence stochastic gradient descent (SGD) becomes applicable. This
procedure alone does not always work well. In addition the intrinsic geometry of the statistical manifold of
distributions, its information geometry, must be taken into account: the parameter manifold is equipped
with a canonical Riemannian geometry with metric tensor given by the Fisher information matrix. The
resulting gradient w.r.t. the intrinsic geometry is called the natural gradient [3].

5 Natural Evolution Strategies

A straightforward optimization strategy is to follow the natural gradient flow on the parameters of the
statistical manifold of search distributions. Doing so by means of stochastic natural gradient descent
indeed gives rise to an evolution strategy. In each generation the offspring population serves as a Monte
Carlo sample for the estimation of the natural gradient. The resulting class of algorithm is called Natural

Evolution Strategies (NES) [8], with the xNES (exponential NES) algorithm [4] marking the current state
of the art. This ES is conceptually interesting in its own right. Importantly, it was shown to be closely
related to the highly efficient CMA-ES [2]. This connection gives new insights into the working principles
of modern evolution strategies.

6 Conclusions

Evolutionary Algorithms are randomized direct search methods. They are well suited for black-box
optimization. Modern algorithms such as the CMA-ES demonstrate high efficiency on a large class of
benchmark problems.

Modern evolution strategies have an additional interpretation as stochastic gradient descent algorithms
on the space of search distributions. This property greatly enhances our understanding of the evolutionary
search process.
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CMA-ES: A Function Value Free Second Order Optimization Method

Nikolaus Hansen

Abstract We give a bird’s-eye view introduction to the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) and emphasize relevant design aspects of the algorithm, namely its invariance properties.
While CMA-ES is gradient and function value free, we show that using the gradient in CMA-ES is
possible and can reduce the number of iterations on unimodal, smooth functions.

Keywords Optimization · Invariance · Evolution Strategies · CMA

Mathematics Subject Classification (2000) MSC 49M37 · MSC 65K05 · MSC 90C15

1 Introduction

We consider the problem to minimize an objective function

f : Rn → R . (1)

We do not assume to have any particular knowledge on the structure of f , thereby considering f as a
black box. The cost of search is given to be the number of calls to the ”black-box” f . In this context,
we define a parameter vector θ and a generic optimization procedure taking three steps

1. propose one or several new candidate solutions, depending on θ
2. evaluate the candidate solution(s) on f
3. update θ

This framework covers essentially any optimization procedure. We focus here on algorithms that sample
from a probability distribution, and more specifically, sample in each iteration the same number of i.i.d.
candidate solutions. In the continuous search space, a (multi-variate) normal distribution suggests itself
as sample distribution, because it has maximum entropy (given that variances exist) and it is in a natural
way detached from the given coordinate system. If the covariance matrix is a multiple of the identity,
the distribution is isotropic.
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2 A Second Order Method

We consider a moderate search space dimensionality n, that is, n 6� 10 and n 6� 100. In this case, utilizing
second-order information seems indispensable to achieve a competitive method. With a multivariate
normal distribution, this can be naturally achieved by using a full covariance matrix to parametrize the
distribution. We have θt = (mt, σt,Ct) ∈ Rn × R+ × Rn×n, and at iteration t, for i = 1, . . . , λ, new
candidate solutions obey

xi = N (mt, σ
2
t Ct) = mt + σt N (0,Ct) , (2)

where N (m,C) denotes a normal distribution with mean m and covariance matrix C. Choosing Ct

mimics in effect the linear coordinate system transformation C
−1/2
t , because (2) is equivalent to

C
−1/2
t xi = C

−1/2
t m + σt N (0, I) . (3)

On convex-quadratic functions, C resembles in the ideal case the inverse Hessian matrix.

3 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

The CMA-ES method prescribes the updates of mt, σt,Ct and of some additional hidden variables
(evolution paths). The updates of m and C can be (to a large extend) derived from information geometry,
as they follow the natural gradient in θ-space [7]. The updates can be motivated equally well from the
maximum likelihood principle [2]. In contrast, the overall step-size σt is updated with the aim to achieve
C−1-conjugate (orthogonal) movements of the mean m. The update procedure is detailed in [1].

The main governing design principle of the CMA-ES algorithm is invariance (see also the contribution
of A. Auger in the present volume). Namely, we find for CMA-ES the same invariance properties as for
the Nelder-Mead Simplex Downhill method [6]: invariance to affine transformations of the search space
(including translations and rotations) and invariance to order-preserving transformations of the f -value.
The former is a natural consequence of a ”full” second order method. The latter sets the two methods
apart from other derivative-free or gradient-based methods to be in essence function value free.

Invariances mean generalization of behavior on single functions to the entire set of functions belonging
to an respective equivalence class [2], thereby making previous observations meaningful for prediction.

Most internal parameters of CMA-ES are not left to the users choice, because reasonable settings do
not depend on the given problem f (in contrast to optimal settings). However, the user must choose a
suitable representation (scaling or transformation of parameters used in f) and corresponding values for
m0 and σ0. The population size λ is an optional parameter to modify, as well as termination settings.

4 Current Developments

We describe two recent developments in the CMA-ES method. First, in implementing the idea of so-
called active CMA [5], i.e. using also negative weights for the update of the covariance matrix, we choose
slowly decreasing weights, proportional to

− log k + log
λ+ 1

2
(4)

for k = d(λ+1)/2e, . . . , λ. Positive weights are by default set with the same equation for k = 1, . . . , bλ/2c.
For λ = 15, the effective parent number becomes 4.5 for positive and 5.9 for negative update. Further-
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Fig. 1 Three runs in dimension n = 40 with default setting (blue) and with injected gradient in replacement of one
sample (red). Initial values are m0 = −0.2 in each component and σ0 = 0.1, and λ = 15. The gradient reduces the number
of iterations by a factor of between 1.5 and 3. The spike at the early stage on the Sphere function shows a possibly much
faster convergence rate, then prevented by the slow decrement of the step-size.

more, the steps used with negative weights are normalized to constant length [4] and positive definiteness
is guarantied by modulating the learning rate accordingly.

Second, we use the gradient of the function to generate one of the samples along C ∇f(mt) [4]. Figure
1 shows results on four different functions [3]. Using the gradient reduces the number of iterations by a
factor between 1.5 and 3. The effect of using the gradient is more pronounced with active CMA, and on
the Tablet function, where active CMA is most relevant. Using the gradient also reduces the effect of λ
on the number of iterations (not shown).

References

1. N. Hansen. The CMA evolution strategy: a comparing review. In J.A. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea,
editors, Towards a new evolutionary computation. Advances on estimation of distribution algorithms, pages 75–102.
Springer, 2006.

2. N. Hansen and A. Auger. Principled design of continuous stochastic search: From theory to practice. In Yossi Borenstein
and Alberto Moraglio, editors, Theory and Principled Methods for the Design of Metaheuristics, Natural Computing
Series, pages 145–180. Springer Berlin Heidelberg, 2013.

3. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Compu-
tation, 9(2):159–195, 2001.

4. Nikolaus Hansen. Injecting external solutions into CMA-ES. ArXiv e-prints, arXiv:1110.4181, 2011.
5. G. A. Jastrebski and D. V. Arnold. Improving evolution strategies through active covariance matrix adaptation. In

IEEE Congress on Evolutionary Computation (CEC 2006), proceedings, pages 2814–2821. IEEE Press, 2006.
6. John Ashworth Nelder and R Mead. A simplex method for function minimization. The Computer Journal, pages

308–313, 1965.
7. Y. Ollivier, L. Arnold, A. Auger, and N. Hansen. Information-geometric optimization algorithms: A unifying picture

via invariance principles (2011v1; 2013v2). ArXiv e-prints, arXiv:1106.3708v2, 2013.



PGMO - COPI’14 

Strategy iteration is strongly polynomial for 2-player turn-based stochastic
games with a constant discount factor

Thomas Dueholm Hansen · Peter Bro Miltersen ·
Uri Zwick

Abstract Ye showed recently that the simplex method with Dantzig’s pivoting rule, as well as Howard’s
policy iteration algorithm, solve discounted Markov decision processes (MDPs), with a constant discount
factor, in strongly polynomial time. More precisely, Ye showed that both algorithms terminate after at
most O

(
mn
1−γ log n

1−γ
)

iterations, where n is the number of states, m is the total number of actions in the
MDP, and 0 < γ < 1 is the discount factor. We improve Ye’s analysis in two respects. First, we improve
the bound given by Ye and show that Howard’s policy iteration algorithm actually terminates after at
most O

(
m

1−γ log n
1−γ

)
iterations. Second, and more importantly, we show that the same bound applies

to the number of iterations performed by the strategy iteration (or strategy improvement) algorithm,
a generalization of Howard’s policy iteration algorithm used for solving 2-player turn-based stochastic
games with discounted zero-sum rewards. This provides the first strongly polynomial algorithm for solv-
ing these games, solving a long standing open problem. Combined with other recent results, this provides
a complete characterization of the complexity of the strategy iteration algorithm for 2-player turn-based
stochastic games; it is strongly polynomial for a fixed discount factor, and exponential otherwise.

This work appeared in Journal of the ACM, 60(1):1-16, 2013.

Keywords Markov Decision Processes · Turn-Based Stochastic Games · Strategy Iteration · Policy
Iteration · Strongly polynomial algorithms
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Methodology for management of power system emergency situations  
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Abstract: We are concerned by tools able to manage the risks of widespread disturbance, primarily addressing 
needs in operations and operational planning. Self-Organized Criticality allows introducing a new condition to 
manage power grid analysis. 
  
Keywords: Self Organized Criticality · Statistical Power Flow Model 
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1 Introduction 
We are concerned by tools able to manage the risks of widespread disturbance, primarily addressing needs in 
operations and operational planning. Literature on blackout shows that large-scale disturbances occur much more 
frequently than deterministic risk assessment would suggest. The focus of this development is to provide:  

ü An awareness system that flags when the power system is approaching a condition where it is 
vulnerable to widespread disturbance, 

ü Ability to assess the risks associated with operational planning, for example day-ahead scheduling or 
maintenance scheduling, 

ü Provide users with guidance information that enables a prompt and targeted response to risks as they 
emerge.  
 

It is important that the tools are available such that high impact/low probability events can be managed in the 
control room and in planning to reduce the system’s exposure to risk. It is beneficial to have a real-time view of 
risk in power systems to alert the user to the occurrence and characteristics of a particular risk issue. It is also 
useful to quantify risk in relation to the operational planning timeframe, to aid decision making by highlighting 
critical system states and elements in the power system that are vulnerable. With this information, targeted 
guidance reports enable operators to move away from high risk states, with a measurement-based approach being 
used to validate the operational action and providing notification to operators that the system has moved to a 
lower risk state as a result of the action.  
It is widely recognized that the probability of large events is not as scarce as we think, as their Cumulative 
Distribution Function (CDF) revealed power law regime (figure 1) and analogy with “Self Organized Criticality” 
regime was shown by Dobson & al. 
 

 
Figure 1: CDF of Energy not supplied 

 
The analogy with the dynamics of sandpile is presented as below: 
 

Power system Variables Sandpile 



fractional overloads system state gradient profile 

load increase driving force addition of sand 

line improvements relaxing force  gravity 

line limit or outage  event sand topples 

cascading lines cascade avalanche 

 
The term “self-organized critical” contains two ideas that are:  

ü "Critical", meaning that the system is correlated over large distances and long times. A system can be 
critical without being self-organized.  

ü "Self-organized" means that the system has a critical behaviour without the need for an operator to fine 
tune a control parameter. The system tends to dynamically adjust the parameter. This leads to a steady 
state and dynamic attractor of evolution. This is the case of sandpile which, from its critical slope, 
undergoes avalanche to return to a dynamically stable slope, depending on the size of the avalanche.  

 
Considering an electrical network under self-organized criticality regime is therefore needed when one takes into 
account the grid in its environment, i.e. we consider the necessary reaction (or feedback reaction) for its 
operation. “feedback” reaction to any dysfunction can be operational policy control (control room), human 
intervention, maintenance operations, planning policy ... and can be quantify. The grid is then a dynamic system, 
managed by two opposing forces (load plan and "response to incident"), in the critical regime or not (subcritical, 
critical, super-critical). The power law behaviour observed experimentally finds its origin in this competition 
(universal behaviour). The SPFM (Statistical Power Flow Model) is based on a DC/AC Power Flow resolution 
with, as variables of interest:  

ü Evolution of the load (nodes) and generation (nodes),  
ü Improvement of the network (lines). 

 
Failures or external events are randomly generated (Gaussian case or not) and two dynamics are represented, the 
slow dynamics representative of the evolution of the load and fast dynamic representative of the avalanche 
phenomenon on the lines. Temporal resolution Δt is 1 day and the time horizon may be years or even more. The 
indexing time can be reassessed because it is a sequence of events.  
This means that SOC regime in power grid is equivalent to put the power grid under maximum stress where any 
random event can produce a minor failure or a major failure all over the network. This is the very significance of 
this new condition which states that SOC regime introduces new physical limitations as are introduced thermal, 
voltage or stability limitations (figure 2).  
 

 
Figure 2: SOC Condition 

2 Conclusions 
As a matter of fact, a probabilistic approach seems to be accurate to describe the real behaviour of the power 
grid. Variables of interest (localized distribution, distributed generation, load demand with demand response, 
regulatory rules …) will be described from a statistical point of view. From the feedback reaction and the 
variables of interest, the absolute criterion would be to get out of the SOC regime (Gaussian regime). From the 
variables of interest and the definition of all the constraints (economical, technical, regulatory rules …) the best 
compromise should be reached (figure 3). 
 



   
Figure 3: Self Organized Criticality model (sandpile) & Expected Optimization 

 
The technical architecture of the project is organized around the Statistical Power Flow Model (SPFM). We shall 
address the question and the definition of the optimization process. 
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Stochastic dynamic programming applied to microgrid management

Benjamin Heymann

Abstract Energy Management Systems (EMS) are usually based on the integer programming frame-
work. A novel method based on stochastic control and dynamic programming is proposed. It allows for a
precise modeling of complex constraints such as the minimal working power of a diesel motor. The EMS
proposed here is based on a rolling horizon strategy. It takes into account historical data and randomness
as well as the aging of the battery and the motor working constraints. A semi-lagrangian scheme was
implemented within BOCOP - a software developed at INRIA - for the numerical simulations. We will
compare such method with the one that is currently implemented in a real microgrid in northern Chile.
We will also analyse the performance of the software implementation. A practical implementation of
the EMS is envisioned. This project is the product of a collaboration between the COMMADS (INRIA,
France) and Centro de Energia teams (Universidad de Chile, Chile).

Keywords Dynamic Programming · Stochastic Control

Mathematics Subject Classification (2000) MSC 93E20 · MSC 90B05 · MSC 90C39

1 Introduction

A microgrid is an electrical network that is disconnected from the main network and is operated au-
tonomously. The model described in the following is based on a real microgrid operated in a village
in northern Chile. The village is very isolated and relies completely on the microgrid for its electricity
supply. The grid uses a mix of fuel and renewable energy. Compared with technics such as interger pro-
gramming, the use of stochastic control allows for a dramatic reduction of the computational cost. The
grid we are considering consists of a solar panel, a wind turbine, a diesel motor and a battery. Our model
aims at finding the optimal operation of those elements that meets the demand. The north of Chile is
characterized by a sunny and regular climat. We consider in the model that there is no uncertainty from
the production side. On the other hand, the demand will be modeled with a stochastic process. The
battery state of health depends on the way it is operated. That’s why we will take into account the aging
of the battery within the model.
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Generic uniqueness of the bias vector of mean-payoff zero-sum games

Marianne Akian · Stéphane Gaubert · Antoine
Hochart

Abstract Zero-sum mean payoff games can be studied by means of a nonlinear spectral problem. When
the state space is finite, the latter consists in finding an eigenpair (u, λ) solution of T (u) = λ1 +u where
T : Rn → Rn is the Shapley (dynamic programming) operator, λ is a scalar, 1 is the unit vector, and
u ∈ Rn. The scalar λ yields the mean payoff per time unit, and the vector u, called the bias, allows one
to determine optimal stationary strategies. The existence of the eigenpair (u, λ) for all state-dependent
perturbations of the payments, i.e. for all the Shapley operators T + v where v is any vector in Rn,
is related to an ergodicity condition which depends only on the support of the transition probabilities.
A basic issue is to understand for which classes of games the bias vector is unique (up to an additive
constant). Here, we consider a perfect information zero-sum game with finite state and action spaces,
whose the transition payments are perturbed by additive parameters which depend only on the state.
We assume that the spectral problem is solvable for all values of the perturbations and we show that the
bias vector, thought of as a function of the perturbation vector, is generically unique (up to an additive
constant). The proof uses techniques of nonlinear Perron-Frobenius theory.

Keywords Optimal control · Game theory · Stochastic optimal control

Mathematics Subject Classification (2000) MSC 47H25 · MSC 47H05 · MSC 91A20

1 Mean payoff zero-sum games

Zero-sum repeated games describe long term interactions between two agents, called players, with op-
posite interests. Here we consider perfect information games with finite state and action spaces. A game
is defined by a finite state space [n] := {1, . . . , n}; a nonempty finite action space Ai for the first player
(MIN), depending on the current state i ∈ [n]; a nonempty finite action space Bi,a for the second player
(MAX), depending on the current state i ∈ [n] and the action a ∈ Ai selected by player MIN; a transition
payment rabi ∈ R paid by player MIN to player MAX at each stage and depending on the current state i
and the actions a, b selected by the players; a transition probability P abi ∈ ∆n−1, depending on the same
data, where ∆n−1 is the set of probabilities over [n]. A play follows the subsequent rules: at each stage (or
time step), if the current state is i, player MIN selects an action a ∈ Ai then, knowing this choice, player
MAX selects an action b ∈ Bi,a; this gives rise to a transition payment rabi and the next state is chosen

Marianne Akian · Stéphane Gaubert · Antoine Hochart
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according to the probability P abi . The payoff of a play is defined as the sum of the transition payments,
that player MIN intends to minimize and player MAX intends to maximize. Given an initial state i, the
game in horizon k is known to have a value, denoted by vki ∈ R. The value vector vk = (vki )i∈[n] follows
a dynamic programing recursion that involves the Shapley operator of the game, T : Rn → Rn, given by

[T (x)]i = min
a∈Ai

max
b∈Bi,a

(
rabi +

∑
j∈[n]

[P abi ]jxj

)
, (1)

Then, we have vk = T (vk−1) and v0 = 0. We will be interested in the mean payoff vector χ(T ) :=
limk→∞ vk/k = limk→∞ T k(0)/k.

The question of the existence of the mean payoff vector is a difficult problem in general, studied by
Bewley, Kohlberg, Mertens, Neyman, Rosenberg, Sorin, Vigeral [6,15,16,18]. However, in our settings,
T appear as a piecewise affine operator, and a result by Kohlberg [14] implies the existence of χ(T ). It
is also guaranteed if there is a pair (u, λ) ∈ Rn × R solution of the so-called ergodic equation

T (u) = λ1 + u, (2)

where 1 is the unit vector of Rn. In that case, we have χ(T ) = λ1. The scalar λ is called the eigenvalue
of T and it gives the mean payoff per time unit. The vector u, called bias vector and defined up to an
additive constant, gives optimal stationary strategies.

2 Bias vectors

The structure of the bias vectors is a fundamental issue. In the one-player case, i.e. for optimal control
problems, the ergodic equation (2) has been much studied and the representation of bias vectors is well
understood. In the deterministic case, the analysis relies on max-plus spectral theory [5]. The set of bias
vectors has the structure of a max-plus cone and it has a unique minimal generating family, consisting
of certain “extreme” generators, which can be identified by looking at the support of the maximizing
measures in the linear programming formulation of the optimal control problem, or at the “recurrence
points” of infinite optimal trajectories. A combinatorial interpretation of some of these results, in terms
of polyhedral fans, has been recently given by Sturmfels and Tran [17]. The eigenproblem has also been
studied for an infinite dimensional state space in the context of infinite dimensional max-plus spectral
theory by Akian, Gaubert and Walsh [4], and also in the setting of weak KAM theory, see Fathi [9]. In
the stochastic case, i.e. for Markov decision processes, the ergodic equation (2) is known as the “average
optimality equation” [11]. The structure of the set of bias vectors in the case of a finite state space is
still known [2].

In the two player case, the structure of the set of bias vectors is less well known. The uniqueness of the bias
vector (up to an additive constant) is a particularly important matter for algorithmic purposes. Indeed,
the nonuniqueness of the bias typically leads to numerical instabilities or degeneracies. In particular, the
standard Hoffman and Karp policy iteration algorithm [12] may fail to converge in such a situation. Some
refinements of the Hoffman and Karp scheme have been proposed by Akian, Cochet-Terrasson, Detournay
and Gaubert [1] and by Bourque and Raghavan [7], allowing one to circumvent such degeneracies at the
price of a complexification of the algorithm. Hence, it is of interest to understand when such technicalities
can be avoided.

3 Generic uniqueness of the bias

The solvability of the ergodic equation (2) is related to ergodicity conditions. In the zero-player case,
i.e. for discrete time Markov chains, such conditions are classical, one of them being the uniqueness
of the invariant measure [13]. In [3], the authors have extended the notion of ergodicity of a Markov
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chain to zero-sum two-player repeated games with finite state space. In particular, based on results of
Gaubert and Gunawardena [10] involving the recession function of the Shapley operator T , defined by

T̂ (x) := limρ→+∞ T (ρx)/ρ, they have shown the following.

Theorem 1 (Ergodicity of zero-sum games [3]) Let us fix a state space [n] and the nonempty
actions spaces Ai and Bi,a of the two players. Let r be a bounded transition payment, let P be a transition
probability, and let T be the Shapley operator of this game. Then, the following properties are equivalent:

1. the recession function T̂ has only trivial fixed points, i.e. proportional to 1;
2. the mean payoff vector of the game does exist and is constant for all state-dependent additive pertur-

bations v of the transition payment, meaning that the transition payments are rabi + vabi = rabi + vi,
for all i ∈ [n], a ∈ Ai and b ∈ Bi,a;

3. the ergodic equation v + T (u) = λ1 + u is solvable for all vectors v ∈ Rn.

Moreover, these conditions depend only on the support of P , defined as the set of points at which the
function (i, a, b, j) 7→ [P abi ]j takes nonzero values.

Here, we assume that the ergodicity condition is satisfied for the game introduced in Section 1 and
we think of all the state-dependent perturbations of the payment as a space of potentials, denoted by
V := Rn. We prove the following.

Theorem 2 The space of potentials V is covered by polyhedral complex such that for each potential v ∈ V
in the interior of a full-dimensional cell, the set of bias vectors of the Shapley operator T + v is unique,
up to an additive constant.

A first ingredient in the proof is the nonlinear spectral theorem in the stochastic case [2]. A second
ingredient is a general result, showing that the fixed point set of a nonexpansive self-map of Rn is a
retract of Rn [8]. This allows us to infer the uniqueness of the bias vector of a Shapley operator from the
uniqueness of the bias vector of the reduced Shapley operators obtained by fixing the strategy of one
player.
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The operational planning of interventions at ERDF 
  
 
Christophe BATTU (ERDF), Olivier JUAN (EDF R&D), Bayram KADDOUR (EDF R&D), Eric THOMAS 
(INFOTEL), Riadh ZORGATI (EDF R&D) 
 
 
 
 
 
 
 
 
Abstract : ERDF (Electricité Réseau Distribution France) is the distribution system operator (DSO) in France. 
Planning the routings of its agents involves up to 11,000,000 interventions, 20,000 agents (or technicians), 
225,000,000 kilometers, and 17,000 vehicles. The planning phase is performed in several steps described below . 
 
(1) Strategic planning consists in determining the location of the sites.  
(2) Tactical planning consists in partitioning the intervention zones.  
(3) Operational planning consists in daily building the routings of the agents of each site.  
(4) On-line planning consists in adjusting the above scheduled routings according to random events (e.g., 
cancellation of a client, weather conditions, traffic jam, etc.).  
 
The operational planning is an asynchronous variant of travelling salesman problem (TSP) with time-window 
constraint and multiple agents. We will describe in this presentation the objectives of this problem and its 
different constraints.  
 
  
Keywords : scheduling, travelling salesman problem with time window, mixed integer programming 
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Dual Approximate Dynamic Programming: Theoretical and Practical
Questions.

P. Carpentier · V. Leclère

Abstract Multistage stochastic optimization problems are large scale optimization problems and thus
numerically hard to solve. One way to tackle a large scale problem is to use a decompostion method that
consists in constructing a number of problems of smaller size that can be solved independently. Those
subproblems are solved iteratively and adapted until we are able to synthetize an optimal solution of
the global problem from the optimal solution of the subproblems.

Spatial decomposition methods are well known in a deterministic setting. However their direct counter-
parts in a stochastic setting lead to a number of difficulties. We present a stochastic spatial decomposition
method that solves an approximation of the original problem. The approximation consists in relaxing
an almost sure coupling constraint into its conditional expectation. We discuss theoretical and practical
questions raised by this algorithm. The algorithm is illustrated on the problem of managing a chain of
hydroelectric dams.

Keywords Multistage Stochastic Optimization · Decomposition Method · DADP

Mathematics Subject Classification (2000) MSC 90C39 · 90C15 · MSC 49M27

1 Introduction

We consider N stochastic dynamic systems coupled by almost sure equality constraints. The global cost
to be minimized is the expectation of a sum over the N systems of the sum over time of local costs. The
problem considered is detailed in §2.

The price decomposition scheme consists in dualizing the coupling constraints, fixing the multiplier, and
obtaining N uncoupled subproblems. From the solution of all subproblems we update the multiplier
before iterating. However, we show in §2.1 that this price decomposition scheme leads to subproblems
which are too difficult to solve by Dynamic Programming (dimension of the state too large). Thus, we
propose an approximation method called Dual Approximate Dynamic Programming (DADP) and based
on the main following ideas:

Pierre Carpentier
UMA (ENSTA)
E-mail: Pierre.Carpentier@ensta-paristech.fr

Vincent Leclère
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– relaxing the almost sure coupling equality constraints into conditional expectation constraint,
– using a price decomposition scheme to obtain subproblems,
– solving the subproblems through methods like Dynamic Programming.

2 Presentation of DADP

We are interested in a production problem involving N units of internal state Xi
t . The system is affected

by time-independent exogenous noise {Wt}
T−1
0 .

We consider the following optimization problem

min
X ,U

N∑
i=1

E
[ T∑

t=0

Li
t

(
Xi

t ,U
i
t ,Wt

)]
(1a)

Xi
t+1 = f it (Xi

t ,U
i
t ,Wt) (1b)

N∑
i=1

θit
(
Xi

t ,U
i
t ,Wt

)
= 0 (1c)

where U i
t is assumed to be non-anticipative.

2.1 First Idea: Price Decomposition Scheme

If it were not for constraint (1c), Problem (1) would lead to a sum of independent subproblems, that
could be optimized independently. Hence, we dualize the coupling constraints (1c), where the multiplier

λ is a (adapted) stochastic process λ =
{
λt

}T
t=0

. We solve the maximization part of the dual problem

using a gradient-like algorithm on λ. Thus, for a fixed multiplier process λ(k), we have to solve N
independent problems of smaller size

min
Xi,Ui

E
[ T∑

t=0

Li
t

(
Xi

t ,U
i
t ,Wt

)
+ λ

(k)
t · θit

(
Xi

t ,U
i
t ,Wt

)]
Xi

t+1 = f it (Xi
t ,U

i
t ,Wt)

(2)

Problem (2) has a physical state Xi
t of smaller dimension than the state of Problem (1). Unfortunately,

the multiplier process {λ(k)
t }T−1

t=0 can be seen as a noise that is not time independent. Hence, Dynamic
Programming is not numerically tractable: the information state is a priori the past realizations of W .

2.2 Second Idea: Constraint Relaxation

We have seen in the previous section that, if we apply a price decomposition scheme to Problem (1) the
subproblems (2) cannot be solved numerically by the Dynamic Programming approach because of the
curse of dimensionality. Thus, we approximate Problem (1) by relaxing the almost sure constraints, in
order to obtain subproblems with a smaller dimension state.

We consider a stochastic process
{
Yt

}T−1

t=0
, called an information process, that follows a dynamic

∀t ∈ [[0, T − 1]], Yt+1 = f̃t(Yt−1,Wt) , (3)
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where f̃t are known deterministic functions. The choice of the information process is arbitrary, but
determines the quality of the method.

We replace, in Problem (1), Constraint (1c) by its conditional expectation w.r.t the information process
(see Constraint (4c)):

min
X ,U

E
[ N∑
i=1

T∑
t=0

Li
t

(
Xi

t ,U
i
t ,Wt

)]
(4a)

Xi
t+1 = f it (Xi

t ,U
i
t ,Wt) (4b)

E
[ N∑

i=1

θit
(
Xi

t ,U
i
t ,Wt

) ∣∣∣ Yt

]
= 0 . (4c)

We easily see that we can restrict ourselves to multiplier processes µ, such that µt is measurable w.r.t
Yt. The multiplier can thus be seen as a function of Yt, and the decomposed problem (equivalent to

Problem (2)) reads, for a given multiplier µ
(k)
t :

min
Xi,Ui

E
[ T∑

t=0

Li
t

(
Xi

t ,U
i
t ,Wt

)
+ µ

(k)
t

(
Yt

)
· θit
(
Xi

t ,U
i
t ,Wt

)]
Xi

t+1 = f it (Xi
t ,U

i
t ,Wt)

Yt+1 = f̃t(Yt,Wt)

(5)

which can be solved by Dynamic Programming with the state
(
Xi

t ,Yt

)
.

2.3 General Scheme

Data: Information process, evolution functions f̃t, starting point y0 and initial multipliers µ
(0)
t ;

Result: optimal multipliers µ]t, admissible feedback ;
repeat

forall the i ∈ [[1, N ]] do
Solve Problem (5) ;

forall the t ∈ [[0, T − 1]] do
Estimate E

[
∆k

t

∣∣ Yt

]
;

Update the multiplier : µ
(k+1)
t = µ

(k)
t + ρ · E

[
∆k

t

∣∣ Yt

]
;

until E
[
∆k

t

∣∣ Yt

]
' 0;

Compute admissible feedbacks ;

Algorithm 1: General Scheme of DADP

3 Conclusion

In the talk we present theoretical questions (existence of multiplier, convergence of the master problem of
the decomposition methods) and practical difficulties (choice of information process, update of multiplier)
of the Dual Approximate Dynamic Programming algorithm.
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Feature selection at scale: the case study of online advertising

Rodolphe Jenatton · Clément Calauzènes · Huang
Xu · Olivier Chapelle · Nicolas Le Roux

Abstract While feature selection are ubiquitous, they are often slow or inaccurate, depending on
whether the number of datapoints of the number of features is large. We propose a hybrid feature
selection technique which scales well to datasets of several billion datapoints and several thousands of
features. We also theoretically prove the effectiveness of filtering as a preprocessing step to an embedded
method. Further, we analyze the influence of every part of the system.

Keywords Feature selection · Large-scale

Mathematics Subject Classification (2000) MSC 49M37 · MSC 65K05 · MSC 90C15

1 Introduction

Optimal feature selection is known to be an NP-hard problem in general [1], where the complexity grows
at least exponentially with the number of features considered. The feature selection methods are usually
classified into three types [2,4]: Filter, Wrapper and Embedded methods. Filter methods select features as
a preprocessing step; they are cheap but can be suboptimal. Wrapper methods use the prediction method
as a black box to score subsets of features; they are good but very expensive. Embedded methods [6],
which belong to a middle ground perform feature selection as part of the training process of the prediction
method. Linear classifiers that use `1 regularization on the weights [9] and Recursive Feature Elimination
(RFE) [5], a backward elimination method that uses smallness of weights to decide feature removal, fall
in this class.

Filter methods are often preferred in practice because they are cheap and more practical. They typically
rank features according to some correlation score between the feature and the target. In case of categorical
features – the focus of this paper – a widely popular method is to use the Mutual Information [7] as
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a correlation score. This method has some limitations, including its reliance on empirical probability
estimates to compute the mutual information. One way to address this was studied in [12] by considering
approximate distributions over the mutual information value instead of a point estimate.

In this paper, the categorical features are encoded as sparse binary vectors. This means that one feature
associated with several parameters, one per element of the vector. Our goal will be to select whole
features rather than individual parameters. Indeed, rejecting a feature allows us to get rid of all the
costly extraction and logging of the feature in real-time. `1 regularization for instance is an effective
way of reducing the number of parameters in the system but it does not necessarily suppress all the
parameters of a given feature and cannot therefore be used for feature selection in our context. For this, a
possible regularization is the so-called `1/`2 regularization or group lasso [8]. This type of regularization
has been used for feature selection in the context of multi-task learning [10] and multi-class classification
[3].

2 Conclusions

While feature selection can have multiple purposes, it is usually applied for three main objectives [4],
namely to avoid overfitting and improve model performance, as measured by the supervised task at
hand, to provide cost-effective models and to summarize the description of the data to make it more
interpretable and understandable. In our context, we are primarily interested in the first two aspects
above, in the sense of bringing as much performance as possible while being able to maintain a reasonable
number of selected features. Indeed, the number of features in the model directly impacts the learning
time of our models, the storage requirements of our dataset and, most importantly, the latency at
prediction time.

This general objective is made more challenging because of the specifics of our setting:

– Categorical variables: When dealing with categorical variables, it is important to distinguish
the number of parameters—in our case p, from the number of features, denoted here by |F| with
p� |F|.In our setting, a single parameter thus corresponds to a pair (f,m) with f ∈ F and m ∈Mf ,
and removing this sole parameter would not permit to perform feature selection. As a result, we need
to design an approach capable of selecting (or discarding) the whole set of modalitiesMf for a given
feature f , i.e., by considering jointly the set of parameters related to all the modalities Mf of f .

– Conjunction features: Our prediction system is based on linear models. One way of bringing non-
linearity in our models and improving their performance is to introduce conjunctions of categorical
features. Although the number of base features is relatively low in practice, considering conjunctions
with multiple orders can lead to a combinatorial growth of the size of the set of features.

– Scale: The practical setting we are interested in implies large scales in all the dimensions of the
problem: The parameter space has a size in the order of 107, the data set is comprised of about 108

observations, while the total number of features |F| can be up to 105 when exploring the space of
conjunctions. Hence, the need for scalability is at the core of the approach proposed. In particular,
it is worth mentioning that we want our method to leverage a parallel computation environment,
which will notably explain some choices made in the optimization.

We propose an approach based on the combination of two steps:

– Forward: A univariate screening phase built from the technique developed in [11,?].
– Backward: A multivariate step relying on a convex, group-sparsity inducing technique.

The rationale of our strategy is quite simple and intuitive: Since our initial set of features F can be quite
large and most likely contains poorly predictive features, we want to be able to quickly and cheaply
discard them. This is the role of the forward screening step. On the other hand, as the set of selected
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features after the first phase tends to be too rough, the backward step makes it possible to refine the
selection.

We show, both theoretically and empirically, that this procedure leads to efficient feature selection, even
for very large datasets.
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Abstract This paper studies chance constraints problems where the random constraint matrix rows are
dependent. The dependence is handled by the means of copulas, namely Archimedean copulas. Convexity
issues are addressed, and conic approximations are given. Numerical experiments are performed on a set
of randomly generated instances.
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1 Introduction

Consider a linear optimization problem with uncertainty

min cTx s.t. Tx ≤ h, x ∈ X, (1)

where X ⊂ Rn is a deterministic closed convex set, c ∈ Rn, h = (h1, . . . , hK)T ∈ RK deterministic
vectors, and T ∈ RK × Rn ia an uncertain (unknown) matrix with rows tT1 , . . . , t

T
K ; n, K are structural

components of the optimization problem (1) under consideration. If X is polyhedral, and a realization
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of the data matrix T is known and fixed in advance, (1) is a standard linear programming problem. In
order to deal with uncertainty of the data matrix, several approaches were developed in the literature,
e.g., classical sensitivity analysis, parametric programming, or robust optimization methods. In this talk,
we concentrate on stochastic chance-constrained programming approach. We assume that T is a random
matrix with a known distribution. Additionally, the uncertain constraints of the problem (1) are required
to be satisfied with a known fixed probability level p ∈ [0; 1]. The linear chance-constrained problem with
random matrix can be written as

min cTx s.t. Pr{Tx ≤ h} ≥ p, x ∈ X. (2)

2 Dependence and copulas

Dependence structure of random vector has been described for years in probability theory and mathe-
matical statistics. In this paper, this notion will be used in order to characterize the dependence between
constraint rows of the problems (2).

In this section, some basic facts about copulas needed for our following investigation are mentioned. We
refer the readers to [5] for a complete information on this theory.

Definition 1 A copula is the distribution function C : [0; 1]K → [0; 1] of some K-dimensional random
vector whose marginals are uniformly distributed on [0;1].

Proposition 1 (Sklar’s theorem) For any K-dimensional distribution function F : RK → [0; 1] with
marginals F1, . . . , FK , there exists a copula C such that

∀z ∈ RK F (z) = C(F1(z1), . . . , FK(zK)). (3)

If, moreover, Fk are continuous, then C is uniquely given by

C(u) = F (F
(−1)
1 (u1), . . . , F

(−1)
K (uK)). (4)

Otherwise, C is uniquely determined on range F1 × · · · × range FK .

This theorem provides a direct link between a copula and the joint distribution function of a given random
vector. Thanks to Sklar’s theorem, the copula represents a convenient tool to describe the dependence
structure of the random vector considered. Moreover, this description separates from description of the
marginal distribution functions of the vector.

3 Our results

In this paper, we investigate the problem of linear joint probabilistic constraints (2). We assume that the
rows of the constraint matrix are dependent, and the dependence is handled by a convenient Archimedean
copula [4]. Further, we assume the distribution of the constraint rows to be elliptically distributed,
covering normal, t, or Laplace distributions [3]. Under these and some additional conditions, we prove
the convexity of the investigated set of feasible solutions. We also develop two approximation schemes for
this class of stochastic programming problems based on second-order cone programming, which provides
lower and upper bounds [1,2]. Finally, a numerical study on randomly generated data is given to illustrate
the tightness of these bounds.
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4 Conclusions

This paper shows the efficiency of using copulas for dealing with the random matrix rows dependence.
The conic approximations allow to come up with numerical results with applications perspectives in
many topics including energy management. Further research will extend this work to other copulas, and
to more efficient conic approximations, namely copositive reformulations together with tight relaxations.
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