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contexts and background sponsored search and ad displays

sponsored search display

marketer get clicks and conversions build brand awareness

publisher search engine (almost) any website

matching publisher third party
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contexts and background kidney exchange programs

kidney transplant: best treatment for end stage renal disease.
99,379 patients on the waiting list in the US as of yesterday1 [France:
21,000 people waiting for a kidney in 2015 (up from 12,000 in 2006)]

over 30,000 new patients each year in the US

only 18,000 transplants per year [France: 3,500 in 2015]

about 12,000 from deceased donors [France: 3,000 in 2015]

alternative: live donation

1United Network for Organ Sharing (UNOS) http://www.unos.org/
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contexts and background competitive ratios

online concepts

online optimization problem = instance incrementally revealed over
time; need to make decisions “online” without knowledge about what
comes next.
online algorithm:

the “quality” of an online algorithm ALG is its competitive ratio c ,
measured against an optimal clairvoyant algorithm OPT with full
knowledge of the instance; for a maximization problem:

c = sup {r | alg(i)/opt(i) ≥ r , ∀ instances i}

it is said to be best possible if there is no other such algorithm with a
larger competitive ratio.
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contexts and background competitive ratios

... online concepts ...

randomized online algorithm: online algorithm with random steps
designed to solve an online problem.
competitive analysis depends on the “power of the offline adversary”:

oblivious adversary: doesn’t know the realizations of the random steps.
adaptive-online adversary: generate the instance adaptively based on
past realizations of the random steps.
adaptive-offline adversary: perfect knowledge of all the realizations
(past and future) of the random steps.

we consider only oblivious adversary.
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contexts and background competitive ratios

... online concepts ...

competitive ratio of a randomized online algorithm against an
oblivious adversary:

c = sup {r | E[ALG(i)]/opt(i) ≥ r , ∀ instances i}

a randomized online algorithm is said to be best possible if there is no
other such algorithm with a larger competitive ratio
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contexts and background competitive ratios

... online concepts

in some cases uncertainty about the future input streams can be
modeled using probabilistic concepts.
how to properly include this “stochastic information” in order to design
better algorithms? can this be quantified?
look at the competitive ratio of an online algorithm defined as

c = sup {r | EP[ALG(I)/OPT(I)] ≥ r}

sometimes can show results hold “with high probability” as opposed to
simply “in expectation”.
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First Part: Online Bipartite Matching Problems
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online bipartite matching problems

bipartite matching: classical and online version

bidders objects

1

2

3

4
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online bipartite matching problems

selected work

KVV90: Karp, Vazirani, Vazirani, [STOC 1990] [online bipartite
matching]
FMMM09: Feldman, Mehta, Mirrokni, Muthukrishnan, [FOCS 2009]
[online stochastic matching under i.i.d. integral arrival rates]
MY11: Mahdian, Yan, [STOC 2011] [online stochastic matching under
unknown distribution]
KMT11: Karande, Mehta, Tripathi, [STOC 2011] [online stochastic
matching under unknown distribution]
MOS13: Manshadi, Oveis-Gharan, Saberi, [MathOR 2013] [online
stochastic matching under i.i.d. general arrival rates]
JL14: J., Lu, [MathOR 2014] [online stochastic matching under
various random models]
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online bipartite matching problems

online bipartite matching: summary of main results

for the adversarial model:

no deterministic online algorithms can do
better than 0.5
the ranking algorithm of KVV90 provides
a best possible randomized algorithm
with competitive ratio 1− 1/e ≈ 0.632

bidders objects

1

2

3

4

what about the case of random inputs, i.i.d. with known distribution?

FMMM09 prove for the first time that one can do better under an i.i.d.
stochastic model and give a 0.670-competitive algorithm under this
scenario.
MOS13 provide a 0.702-competitive algorithm
in JL14, we obtain a (1− 2/e2 ≈ 0.729)-competitive algorithm,
best-known so far
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online bipartite matching problems

an overall approach

given an i.i.d. model with known distribution,
by solving an optimal maximum cardinality
matching for each possible i.i.d. draws, one
could “calculate” p∗ik the probability that edge
(i , k) is part of an optimal solution in any
given random realization ...

... instead of computing p∗ik , we formulate
special maximum flow problems whose
optimal solutions provide the input for the
design of good online algorithms.
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online bipartite matching problems

a maximum flow problem for the case of i.i.d. uniform

under the i.i.d. uniform assumption one can show

p∗ik ≤ 1− 1/e ≈ 0.632 ∀(i , k) ∈ E .

max
∑

(i ,k)∈E
xik

s.t.
∑

k:(i ,k)∈E
xik ≤ 1 ∀i ∈ B∑

i :(i ,k)∈E
xik ≤ 1 ∀k ∈ O

xik ∈ [0, 2/3] ∀(i .k) ∈ E
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online bipartite matching problems

a “light” version of the 0.729-competitive algorithm

our randomized online algorithms (a bit simplified)

1 let x∗ be an optimal solution to the previous LP.
2 When an object of type k arrives,

if all bidders i such that x∗ik > 0 have already been
matched, then drop the request;
otherwise, randomly assign the request to one of these
unmatched bidders, proportionally to x∗ik

⇒ competitive ratio = 1− 2/e2

bidders objects

1

2

3

4
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Second Part: Matching Markets for Kidney Exchange



D
ra
ft

matching markets for kidney exchange settings
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matching markets for kidney exchange settings

data

blood-type compatibility:

tissue-type compatibility: the likelihood of being compatible with a
random donor (from a compatible blood type) is measured by the
PRA (panel reactive antibodies): low PRA = highly compatible.
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matching markets for kidney exchange settings

data and model - thickness and heterogeneity

thickness: how easy is it for a typical patient to get a “match”?
tissue-type compatibility:

high PRA = “hard” to match
low PRA = “easy” to match

bimodal distribution ⇒ two-type model:
hard-to-match (H): typical probability pH = 2.5%
easy-to-match (E): typical probability pE = 90%
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matching markets for kidney exchange settings

main questions

how to match in an heterogeneous environment?
how do myopic (greedy in time) algorithms perform?
how does the composition of the pool impact the types of exchanges
needed to achieve the best performance?
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matching markets for kidney exchange settings

selected work

RSU07: Roth, Sönmez, Ünver, 2007, [compatibility-based static
matching]
U10: Ünver, 2010, [dynamic kidney exchange, blood-type
compatibility, homogeneous case]
AR11: Ashlagi, Roth, 2011, compatibility-based static matching]
AGRR12: Ashlagi, Gamarnik, Rees, Roth, 2012 [compatibility-based
static matching]
AAKG13: Anderson, Ashlagi, Kanoria, Gamarnik, 2013,
[compatibility-based dynamic matching, homogeneous case]
ALO14: Akbarbour, Li, Oveis Gharan, 2014,[compatibility-based
dynamic matching, with departure]
ABJM16: Ashlagi, Burq, J., Manshadi, 2016, [compatibility-based
dynamic matching, heterogeneous case]
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matching markets for kidney exchange modeling assumptions

modeling assumptions

an incompatible patient-donor pair is represented as a node.
nodes arrive over time: one node arrival at each time step.
arriving node has type H with probability θ (and type E w.p. 1− θ).

compatibility between nodes is modeled as a random graph, where the
probability of an arc depends on the type of the receiving node:

PH→H = PE→H = pH = o(1).
PH→E = PE→E = pE = Θ(1).

no endogenous departures.
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matching markets for kidney exchange modeling assumptions

matching technology options

in real kidney exchanges, matches are conducted over time:
bilaterally,
in multi-way cycles,
through chains.

in our model, we only consider:
bilateral matchings
chain matchings
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matching markets for kidney exchange modeling assumptions

our measure of efficiency

average waiting times
infinite horizon, dynamic system, steady-state behavior.
everyone eventually gets matched
the E nodes typically wait very little
⇒ objective : minimize wH , the average waiting time for H nodes in
steady-state.

note: by Little’s law, if nH is the average number of H nodes waiting in
steady state, then: nH = θwH .
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matching markets for kidney exchange lower bound performance

lower bound on best-possible algorithms

Proposition 1 (ABJM16)

under any matching policy that reaches a steady state, average
waiting times are such that wH + wE = Ω( 1

pH
).

intuition: by contradiction: if the pool size is too small, an arriving node
has a small probability of being matched immediately, and must wait a
“long” time to get at least an incoming arc; by Little’s law, this in turn
would imply a “large” pool size.

Proposition 2 (ABJM16)

under any bilateral matching policy that reaches a steady state, the
average waiting time of node H is such that wH = Ω( 1

p2H
)

intuition: main idea is to show that a significant fraction of H nodes have
to match to each other as a necessary condition for steady-state.
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matching markets for kidney exchange bilateral matching algorithm

bilateral matching

BilateralMatch-H algorithm:
only 2-cycles are considered.
matches are conducted as soon as possible (myopic policy).
in case of ties, priority is given to H agents.

properties:
arcs present at t are never used for a matching at a time > t.
system is characterized by only Nt = (NH(t),NE (t)).
Nt is a positive recurrent Markov Chain.
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matching markets for kidney exchange bilateral matching algorithm

BilateralMatch-H performance

Theorem 1 (ANJM16)

if θ < 1/2, BilateralMatch-H achieves a waiting time wH = Θ
(

1
pH

)
if θ ≥ 1/2, BilateralMatch-H leads to much larger waiting time
wH = Θ

(
1
p2H

)
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matching markets for kidney exchange bilateral matching algorithm

intuition of the proof

case θ < 1/2: more E than H nodes:

when there are a lot of E nodes, H nodes can easily match to them
bilaterally; the probability of that happening is pH for each H node
waiting in the system.
⇒ there needs to be only 1/pH nodes waiting for one to be matched
with high probability at every time step ...

case θ > 1/2: more H than E nodes:

when there are few E nodes however, some H nodes have to match to
each other; the probability of this happening drops to p2

H

⇒ there needs to be 1/p2
H nodes waiting for one to be matched with

high probability at every time step ...
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matching markets for kidney exchange bilateral matching algorithm

priorities - what about BilateralMatch-E performance?

Theorem 1 also holds for a policy that prioritizes for E nodes instead
of H nodes (proved when pE = 1, conjectured when pE < 1)
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matching markets for kidney exchange chain matching algorithm

chain matching

motivations
“non-directed” donors allow for chain matching.
very good performance in static systems.
very widely used in kidney exchange platforms.

known results
chains can be used in dynamic matching [Anderson et al.].
often at high computation cost (longest chains in the graph).

our results
extension to heterogeneous systems.
good performance with myopic (greedy in time and in chain
exploration) policy.
heterogeneity helps.
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matching markets for kidney exchange chain matching algorithm

chain matching
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ChainMatch algorithm:
arrival of an altruistic agent.
priority for H agents in case of a
tie.
we match agents as soon as
possible.
the next agent is chosen
randomly

properties:
system is defined by (NH(t),NE (t)).
Markov property.
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ChainMatch performance

Theorem 2 (ANJM16)

in the special case pE = 1,

if θ < 1, ChainMatch achieves a waiting time wH = Θ
(

1
pH

)
if θ = 1, ChainMatch achieves a waiting time wH = O

(
ln(1/pH)

pH

)
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summary results: chain vs bilateral
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discussion

performance of myopic algorithms
- batching does not help reduce waiting times.
- greedy chains perform as well as longest chains.

value of heterogeneity.

- for θ < 1, waiting times decrease as 1
1−θ .

- having at least 50% of E agents allows for near-optimal performance
using bilateral matching.
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takeaways

benefits of heterogeneity
- tradeoff between complexity of the matching mechanism and
performance.

- simpler chain-matching algorithm while keeping optimal performances.
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