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Abstract

Game theory studies interactions between agents with specific aims,
be they rational actors, genes, or computers. This course is intended
to provide the main mathematical concepts and tools used in game
theory with a particular focus on their connections to learning and
convex optimization. The first part of the course deals with the basic
notions: value, (Nash and Wardrop) equilibria, correlated equilibria.
We will give several dynamic proofs of the minmax theorem and
describe the link with Blackwell’s approachability. We will also study
the connection with variational inequalities.



The second part will introduce no-regret properties in on-line learning
and exhibit a family of unilateral procedures satisfying this property.
When applied in a game framework we will study the consequences
in terms of convergence (value, correlated equilibria). We will also
compare discrete and continuous time approaches and their analog
in convex optimization (projected gradient, mirror descent, dual
averaging). Finally we will present the main tools of stochastic
approximation that allow to deal with random trajectories generated
by the players.



Part A

BASIC TOOLS AND RESULTS



A.1 Value and equilibria

This section deeply relies on the books:

Mertens J.-F., S. Sorin and S. Zamir (2015) Repeated Games,
Cambridge University Press.

Laraki R., J. Renault and S. Sorin (2019) Mathematical Foundations
of Game Theory, Springer.
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Strategic games: introduction

Strategic games: notations

A strategic game G is defined by:
- a set I of players, (I will denote also the cardinal),
- a set Si of strategies for each player i ∈ I,
- a mapping g from S = ΠI

i=1Si into RI.

gi(s) is the payoff of player i when the profile s = (s1, · · · ,sI) is played.

Denote s = (si,s−i) where s−i is the vector {sj; j 6= i} and S−i = Πj6=i Sj.



∆(K)= simplex on a finite set K = {x ∈ RK ,xk ≥ 0,∑k∈K xk = 1},
= set of Borel probabilities on a topological space K (compact,
metric).

Mixed extension of G:
Σi = ∆(Si), i ∈ I set of mixed strategies of player i, Σ = Πi∈IΣ

i,
multilinear extension of g to Σ (assuming Fubini):

gj(σ) =
∫

ΠI
i=1Si

gj(s)ΠI
i=1dσ

i(si)



Strategic games: definitions

For ε ≥ 0, the (ε−)best reply correspondence BRi
ε of player i, from S−i

to Si, is defined by:

BRi
ε(s
−i) = {si ∈ Si : gi(si,s−i)≥ gi(ti,s−i)− ε,∀ti ∈ Si}.

It associates to every profile of the opponents the set of ε−best
replies of a player.

Write BR : S ⇒ S, for the global best reply correspondence that maps
s ∈ S to ∏i∈I BRi(s−i).

The extension of BR : Σ ⇒ Σ to the mixed extension of the game is
straightforward.



Equilibrium

A Nash equilibrium (Nash, 1950 [33]) is a profile of strategies s ∈ S
where no player can gain by changing his strategy.

More generally, for ε ≥ 0, an ε−equilibrium is a profile s ∈ S, such that
for all i, si ∈ BRi

ε(s
−i), which is:

gi(ti,s−i)≤ gi(s)+ ε, ∀ti ∈ Si, ∀i.

Thus s is an equilibrium iff s is a fixed point of the BR corre-
spondence:

s ∈ BR(s).

An equilibrium s is strict if {s}= BR(s).



Alternatively, a profile t eliminates a profile s if there exists a player
i ∈ I with gi(ti,s−i)> gi(s).
Let E(t)⊂ S be the set of profiles not eliminated by t ∈ S.

An equilibrium is then a profile in ∩t∈SE(t).

This formulation is in the spirit of an equilibrium being a “rational” rule
of behavior.



Zero-sum games: value

A two-person, zero-sum game is a game where I = 2, S1 = S, S2 = T
and given f : S×T→ R, the payoffs are g1 =−g2 = f .
The interests of the players are opposite: g1 +g2 = 0.
One introduces the following quantities:

v = sup
S

inf
T

f (s, t) v = inf
T

sup
S

f (s, t);

v is the largest amount that Player 1 can guarantee
and a strategy s ∈ S is ε(≥ 0)-optimal if:

f (s, t)≥ v− ε, ∀t ∈ T.

The game has a value v if: v = v = v.



The link between value and equilibria is as follows:

Proposition 1.1
Assume that the game has a value and that s, t are ε-optimal. Then
they form a 2ε−equilibrium:

f (s, t′)+2ε ≥ f (s, t)≥ f (s′, t)−2ε, ∀ s′, t′ ∈ S×T.

(For ε = 0, this is a saddle point.)



Minmax theorem 1: Finite case

The sets of pure strategies or actions (moves) S = I, T = J are finite.
The (payoff of the) game G is represented by a I× J matrix A, an
element x ∈ ∆(I) corresponds to a row matrix (mixed strategy of player
1) and an element y ∈ ∆(J) to a column matrix (mixed strategy of
player 2), so that the payoff is given by the bilinear form f (x,y) = xAy.

Theorem 1.1 (Von Neumann, 1928 [47])
Let A be a I× J real matrix.
There exist (x∗,y∗,v) in ∆(I)×∆(J)×R such that :

x∗Ay≥ v, ∀y ∈ ∆(J) and xAy∗ ≤ v, ∀x ∈ ∆(I). (1)

In other words, the mixed extension of a matrix game has a value
(one also says that any finite zero-sum game has a value in mixed
strategies) and both players have optimal strategies.

For an extension to coefficients in an ordered field, see Weyl, 1950
[49].



The real number v in the theorem is uniquely determined and
corresponds to the value of the matrix A :

v = max
x∈∆(I)

min
y∈∆(J)

xAy = min
y∈∆(J)

max
x∈∆(I)

xAy.

It is also denoted by val(A).
As a mapping defined on matrices, from RI×J to R, the operator val
is positively homogeneous, monotonic (increasing) and non
expensive :

|val(A)−val(B)| ≤ ‖A−B‖∞

These properties extend to the general framework of zero-sum
games:

|val(f )−val(g)| ≤ ‖f −g‖∞.



Minmax theorem 2: Compact case

S and T are subsets of Hausdorff topological real vector spaces.

Theorem 1.2 (Sion, 1958 [41])
Let G = (S,T, f ) be a zero-sum game satisfying:
(i) S and T are convex,
(ii) S or T is compact,
(iii) for each t in T, f (., t) is quasi-concave and u.s.c. in s,
and for each s in S, f (s, .) is quasi-convex and l.s.c. in t.

Then G has a value: sups∈S inft∈T f (s, t) = inft∈T sups∈S f (s, t).

Moreover, if S (resp. T) is compact, the above suprema (resp. infima)
are achieved, and the corresponding player has an optimal strategy.



The proof uses a finite dimentional version of the following
intersection lemma (Berge (1966) [3, p. 172]).

Lemma 1.1
Let C1, . . . ,Cn be non-empty convex compact subsets of a Hausdorff
topological real vector space. Assume:
1) the union

⋃n
i=1 Ci is convex,

2) for each j = 1, . . . ,n, the intersection
⋂

i6=j Ci is non-empty.
Then the full intersection

⋂n
i=1 Ci is non-empty.

The proof is by induction and only uses the Hahn–Banach strict
separation theorem.

See,e.g.:
MSZ, Section I.1
LRS, Chapter 3.



Proof (of Theorem 1.2):
Assume S compact.
Suppose by contradiction that G has no value. Then there exists a
real number v such that

sup
s∈S

inf
t∈T

f (s, t)< v < inf
t∈T

sup
s∈S

f (s, t).

1) We first reduce the problem to the case where S and T are
polytopes.
Define for each t in T the set St = {s ∈ S,g(s, t)< v}. The family (St)t∈T

is an open covering of the compact set S, so there exists a finite
subset T0 of T such that S =

⋃
t∈T0

St. Let T̂ = co(T0) which is compact
and satisfies:

max
s∈S

inf
t∈T̂

f (s, t)< v < inf
t∈T̂

sup
s∈S

f (s, t).



Proceed similarly with the strategy space of player 1: the family
(T̂s = {t ∈ T̂, f (s, t)> v})s∈S being an open covering of T̂, there exists a
finite subset S0 of S such that :

∀s ∈ Ŝ = co(S0),∃t ∈ T0, f (s, t)< v,

∀t ∈ T̂ = co(T0),∃s ∈ S0, f (s, t)> v.

Assume that (S0,T0) is a minimal pair for inclusion satisfying this
property: if necessary drop elements from S0 and/or T0.
2) ∀s ∈ S0, let As = {t ∈ T̂; f (s, t)≤ v} which is non-empty convex and
compact. Note that

⋂
s∈S0

As = /0 and by minimality of S0,⋂
s∈S0\{s0}As 6= /0 for each s0 in S0.

By the intersection lemma, the union
⋃

s∈S0
As is thus not convex.

Hence there exists a t∗ in T̂\
⋃

s∈S0
As, so that f (s, t∗)> v,∀s ∈ S0. By

quasi-concavity of f (·, t∗), the inequality f (s, t∗)> v also holds for each
s ∈ Ŝ.
Similarly, there exists s∗ ∈ Ŝ such that f (s∗, t)< v for each t ∈ T̂.
Considering f (s∗, t∗) gives the required contradiction.



Theorem 1.3 (Mixed extension)
Let G = (S,T, f ) be a zero-sum game such that:
(i) S and T are compact Hausdorff topological spaces,
(ii) for each t in T, f (., t) is u.s.c., and for each s in S, f (s, .) is l.s.c.
(iii) f is bounded and mesurable with respect to the product Borel
σ -algebra BS⊗BT .

Then the mixed extension (∆(S),∆(T), f ) of G has a value. Each
player has a mixed optimal strategy, and for each ε > 0 each player
has an ε-optimal strategy with finite support.



Recall the earlier result:

Theorem 1.4 (Ville, 1938 [46])
Let I = J = [0,1] and f be a real-valued continuous function on I× J.
The mixed extension (∆(I),∆(J), f ) has a value and each player has
an optimal strategy.
This is the first proof of the minmax theorem using a separation
(Hahn-Banach) argument.

See:
MSZ, Section I.1
LRS, Chapter 3.



Minmax principle

The next example, due to Aumann and Maschler, 1968 [2], shows the
difference between an analysis in terms of (maxmin/minmax) optimal
strategies or of equilibria.

L R
T (2,0) (0,1)
B (0,1) (1,0)

Considering only the payoff of player 1, this defines a zero-sum game
with value V1 = 2/3 and optimal strategy for player 1: x̄ = (1/3,2/3).
The dual parameters are V2 = 1/2 and ȳ = (1/2,1/2) for player 2.
On the other hand the game has a single equilibrium:
x∗ = (1/2,1/2),y∗ = (1/3,2/3) with payoff E = (2/3,1/2).
Note that for player 1 the equilibrium payoff is equal to his value (2/3)
but that the equilibrium strategy x∗ does not guarantee it, while x̄
does. A similar statement holds for player 2.
However the strategies (x̄, ȳ) are not in equilibrium.



Adding the optimal and equilibrium strategies gives the matrix:

L R eq op
T (2,0) (0,1) (2/3, .) (1,1/2)
B (0,1) (1,0) (2/3,1/3) ( .,1/2)
eq ( .,1/2) (1/2,1/2) (2/3,1/2) ( .,1/2)
op (2/3,2/3) (2/3, .) (2/3, .) (2/3,1/2)



The next 5 sections provide proofs of the minmax theorem
(finite case).



Proofs of minmax theorem

Minmax theorem via ODE
We follow Brown and von Neumann, 1950 [9]. A)

Lemma 2.1
Any real matrix B, I× I, antisymmetric (B =−tB), has a value.
Proof : Let X = ∆(I). It is equivalent to prove the non-emptiness of
X(B) = {x ∈ X;Bx≤ 0}.
Let Ki(x) = [eiBx]+, i ∈ I,K(x) = ∑i∈I Ki(x) and consider the dynamical
system on X defined by:

ẋi
t = Ki(xt)− xi

tK(xt), i ∈ I. (2)

Let V(x) = ∑i∈I Ki(x)2. The set of rest points of (2) is: X(B) = V−1(0)
since Ki(x) = xiK(x) gives V(x) = K(x)xBx = 0.



Finally:

d
dt

V(xt) = 2∑
i

Ki(xt)eiBẋt = 2[K(xt)BK(xt)−{K(xt)Bxt}K(xt)] =−2K(xt)V(xt).

Hence V(xt) is strictly decreasing on the complement of X(B).
Compactness implies that the accumulation points of xt are in X(B)
which is thus non empty.



B) We now deduce from Lemma 2.1 that any matrix A has a value.
One can assume Aij > 0 for all (i, j).

B.a) Following Gale, Kuhn and Tucker, 1950 [14], introduce the
antisymmetric matrix B, of size (I + J+1)× (I + J+1) defined by:

B =

 0 A -1
-tA 0 1
1 -1 0


Consider an optimal strategy z = (x,y, t) for player 1 in the game B;
then one checks easily that x and y (normalized) are optimal
strategies for both players in the game A.



b) An alternative proof, Brown and von Neumann, 1950 [9], is to
consider the (I× J)× (I× J) matrix C defined by:

Cij;i′j′ = Aij′−Ai′j.

Hence each player plays in game C both as player 1 and 2 in the
initial game A.
From an optimal strategy in game C one constructs optimal strategies
for both players in game A.



Replicator dynamics

We follow Hofbauer, 2018 [18].
Introduce the replicator dynamics, Taylor and Jonker,1978 [44],
defined by the following equations, with x0 ∈ int(X),y0 ∈ int(Y):

ẋi
t = xi

t[e
iAyt− xtAyt], ∀i ∈ I (3)

ẏj
t = yj

t[−xtAej + xtAyt], ∀j ∈ J.

This defines trajectories in X×Y since d
dt ∑i∈I xi

t = 0 and xi
0 > 0 implies

xi
t > 0,∀t ≥ 0, i ∈ I.

Introduce the time average trajectory: x̄T = 1
T

∫ T
0 xtdt.

By integrating:
ẋi

t

xi
t
= eiAyt− xtAyt, ∀i ∈ I

one obtains:

1
T
[logxi

T − logxi
0] = eiAȳT −

1
T

∫ T

0
xsAysds ∀i ∈ I.



Consider a sequence Tk→ ∞ on which (x̄Tk , ȳTk ,
1
Tk

∫ Tk
0 xsAysds)

converge to (x∗,y∗,w). Then:

eiAy∗ ≤ w≤ x∗Aej, ∀i ∈ I, ∀j ∈ J.

Hence the game has a value, w and x∗, y∗ are optimal strategies.

The proof shows more:
- any accumulation point x̄ of x̄T belongs to X(A), set of optimal
strategies of player 1 in the game A,
- the average payoff along the trajectory 1

T

∫ T
0 xsAysds converges to the

value.



Minmax theorem via unilateral process
Lehrer and Sorin, 2001 [25]

A) Preliminary result
Le C be a non empty closed subset of Rk (endowed with the
Euclidean scalar product 〈 , 〉).
For z ∈ Rk, PC(z) stands for a closest point to z in C. Let {zn} be a
bounded sequence in Rk: ‖zn‖ ≤M.
z̄n denotes the Cesaro mean up to stage n of the sequence {zm}:

z̄n =
1
n

n

∑
m=1

zm.

Definition 2.1
{zn} is a Blackwell C-sequence, Blackwell, 1956 [4], if it satisfies :

〈zn+1−PC(z̄n), z̄n−PC(z̄n)〉 ≤ 0, ∀n. (4)





Lemma 2.2
If {zn} is a Blackwell C-sequence, dn = d(z̄n,C) converges to 0.
Proof : Let un = PC(z̄n)then :

d2
n+1 ≤ ‖zn+1−un‖2 = ‖zn−un‖2 +‖zn+1− zn‖2 +2〈zn+1− zn,zn−un〉

Decompose:
〈zn+1− zn,zn−un〉= (

1
n+1

)〈zn+1− zn,zn−un〉

= (
1

n+1
)(〈zn+1−un,zn−un〉−‖zn−un‖2).

Using the hypothesis 〈zn+1−un,zn−un〉 ≤ 0, we obtain:

d2
n+1 ≤ (1− 2

n+1
) d2

n +(
1

n+1
)2‖zn+1− zn‖2.

From: ‖zn+1− zn‖2 ≤ 2‖zn+1‖2 +2‖zn‖2 ≤ 4M2, one deduces:

d2
n+1 ≤ (

n−1
n+1

) d2
n +(

1
n+1

)2 4M2

and by induction :

dn ≤
2M√

n
.



B) Consequence: minmax theorem.
Let A be a I× J matrix and assume that the minmax is 0 :

v̄ = min
y∈∆(J)

max
x∈∆(I)

xAy = min
y∈∆(J)

max
i∈I

eiAy = 0.

Proposition 2.1
Player 1 can guarantee 0, i.e. v≥ 0.
Proof : Let us construct by induction a sequence zn ∈ RJ.
The first term z1 is any row of the matrix A.
Given z1,z2, ...,zn, define zn+1 as follows :
Let z̄+n be the vector with jth coordinate equals to max(z̄j

n,0).
If z̄n = z̄+n , take zn+1 as any row of A.
Otherwise let a > 0 such that :

yn =
z̄+n − z̄n

a
∈ ∆(J).

Since v̄ = 0, there exists in+1 ∈ I such that ein+1Ayn ≥ 0. Define zn+1 as
such a line in+1 of the matrix A.



By construction:

0≤ a ein+1Ayn =
〈
zn+1, z̄+n − z̄n

〉
.

Since 〈z̄+n , z̄+n − z̄n〉= 0 one gets :

〈zn+1− z̄+n , z̄n− z̄+n 〉 ≤ 0. (5)

Let C = {z ∈ RJ; z≥ 0}.
Note that : z̄+n = ΠC(z̄n) = PC(z̄n) (where ΠC denotes the orthogonal
projection on the convex closed set C) so that (5) gives (4):
{zn} is a Blackwell C-sequence.
Finally write z̄n = x̄nA.
Any accumulation point x̂ of the sequence {x̄n} ∈ ∆(I) satisfies x̂A ∈ C.
Hence x̂Ay≥ 0, ∀y ∈ ∆(J), thus v≥ 0.



Fictitious play

Let A be a I× J real matrix.
The following process, called fictitious play, has been introduced by
Brown, 1951 [8].
Consider two players playing in a repeated way the matrix game A.
At each stage t = 1, ...,n, ..., each player is aware of the previous
action (move) of her opponent and compute the empirical distribution
of the actions used in the past. Player 1 (resp. 2) plays then an action
it (resp. jt ) which is a best reply to this average.
Explicitly, starting with any (i1, j1) in I× J, consider at each stage n,
xn =

1
n ∑

n
t=1 eit , viewed as an element of ∆(I), and similarly

yn =
1
n ∑

n
t=1 ejt ∈ ∆(J).



Definition 2.2
A sequence (in, jn)n≥1 with values in I× J is the realization of a
fictitious play process for the matrix A if, for each n≥ 1, in+1 is a best
reply of player 1 to yn for A:

in+1 ∈ BR1(yn) = {i ∈ I : eiAyn ≥ ekAyn,∀k ∈ I}

and jn+1 is a best reply of player 2 to xn for A (jn+1 ∈ BR2(xn), defined
in a dual way).

The main properties of this procedure are given by the next result.



Theorem 2.1 (Robinson, 1951 [36])
Let (in, jn)n≥1 be the realization of a fictitious play process for the
matrix A.
1) The distance from (xn,yn) to the set of optimal strategies
X(A)×Y(A) goes to 0, as n→ ∞.
Explicitely : ∀ε > 0,∃N,∀n≥ N,∀x ∈ ∆(I),∀y ∈ ∆(J) :

xn Ay≥ val(A)− ε and xAyn ≤ val(A)+ ε.

2) The average payoff on the trajectory, 1
n ∑

n
t=1 Ait,jt , converges to

val(A).
Proof :
We will prove the theorem by considering the continuous time analog.



Take as variables the empirical frequencies xn and yn, so that the
discrete dynamics for player 1 writes :

xn+1 =
1

n+1
[in+1 +nxn] with in+1 ∈ BR1(yn)

hence satisfies :

xn+1− xn ∈
1

n+1
[BR1(yn)− xn].

The corresponding system in continuous time is now :

ẋt ∈
1
t

[
BR1(yt)− xt

]
. (6)

This is a differential inclusion which defines, with a similar condition
for player 2, the process (CFP): continuous fictitious play.



Write the payoff as f (x,y) = xAy and for (x,y) ∈ ∆(I)×∆(J), let :

L(y) = max
x′∈∆(I)

f (x′,y) M(x) = min
y′∈∆(J)

f (x,y′).

The duality gap at (x,y) is defined as :

W(x,y) = L(y)−M(x)≥ 0

and the pair (x,y) are optimal strategies in A if and only if W(x,y) = 0.



Proposition 2.2 (Harris, 1998 [17]; Hofbauer and Sorin, 2006
[20])
For the (CFP) process, the duality gap converges to 0 at a speed
O(1/t).
Proof : Make the time change zt = xet in (6) which leads to the
autonomous differential inclusion:

ẋt ∈
[
BR1(yt)− xt

]
, ẏt ∈

[
BR2(xt)− yt

]
. (7)

known as the best reply dynamics (BR), Gilboa and Matsui, 1991
[15]).
Let now (xt,yt)t≥0 be a solution of (BR), see Aubin and Cellina,1984
[1].
Denote by wt = W(xt,yt) the evaluation of the duality gap on the
trajectory, and write αt = xt + ẋt ∈ BR1(yt) and βt = yt + ẏt ∈ BR2(xt).
One has L(yt) = f (αt,yt), thus:

d
dt

L(yt) = α̇tD1f (αt,yt)+ ẏtD2f (αt,yt).



The envelope’s theorem (see e.g., Bonnans and Shapiro (2000) [5] )
shows that the first term collapses and the second term is f (αt, ẏt)
(since f is linear w.r.t. the second variable). Then we obtain :

ẇ(t) =
d
dt

L(yt)−
d
dt

M(xt) = f (αt, ẏt)− f (ẋt,βt)

= f (xt, ẏt)− f (ẋt,yt) = f (xt,βt)− f (αt,yt)

= M(xt)−L(yt) =−w(t)

thus :
wt = w(0) e−t.

There is convergence of wt to 0 at exponential speed, hence
convergence to 0 at a speed O(1/t) in the original problem before the
time change.The convergence to 0 of the duality gap implies by
uniform continuity the convergence of (xt,yt) to the set of optimal
strategies X(A)×Y(A).



The result is actually stronger: the set X(A)×Y(A) is a global
attractor for the best reply dynamics, Hofbauer and Sorin, 2006 [20],
which implies the convergence of the discrete time version, hence of
the fictitious play process, i.e. part 1) of proposition 2.1.

For an alternative proof in the same spirit, see Lehrer and Sorin,
2007 [26].



We finally prove part 2) of proposition 2.1, Rivière, 1994 [35],
Monderer and Sela, 1996 [30].
Proof :
Let us consider the sum of the realized payoffs : Rn = ∑

n
p=1 f (ip, jp).

Writing : Ui
m = ∑

m
k=1 f (i, jk), one obtains :

Rn =
n

∑
p=1

(Uip
p −Uip

p−1) =
n

∑
p=1

Uip
p −

n−1

∑
p=1

Uip+1
p = Uin

n +
n−1

∑
p=1

(Uip
p −Uip+1

p )

but the fictitious play property implies that :

Uip
p −Uip+1

p ≤ 0.

Hence limsupn→∞

Rn
n ≤ limsupn→∞ maxi

Ui
n

n ≤ val(A), since
Ui

n
n = f (i,yn)≤ val(A)+ ε for n large enough by part 1) of proposition

2.1.
The dual inequality thus implies the result.



Note that Part 1 and Part 2 of the theorem are independent.

In general convergence of the average marginal trajectories on moves
does not imply any property of the average payoff on the trajectory.
For example in the "matching pennies" game :

1 −1
−1 1

convergence in average of both strategies to (1/2,1/2) is compatible
with a sequence of payoffs 1 or -1.



Proof by induction

Proposition 2.3 (Loomis, 1946 [27])
Let A and B be two I× J real matrices, with B� 0. Then there exist
(x,y,v) in ∆(I)×∆(J)×R such that :

xA≥ v xB and Ay≤ v By.

With Bij = 1 for all (i, j) ∈ I×J, one recovers von Neumann’s theorem.

Proof : The proof is obtained by induction on the dimension
|I|+ |J|= m+n. The result is clear for m = n = 1.
1) Assume the result is true for m+n−1.
Let λ0 = max{λ ∈ R,∃s ∈ ∆(I),sA≥ λ sB} and
µ0 = min{µ ∈ R,∃t ∈ ∆(J),At ≤ µBt} so that λ0 ≤ µ0.
If λ0 = µ0, the result holds, hence assume that λ0 < µ0.
Let s0 and t0 be optimal, and note that s0A = λ0 s0B and At0 = µ0 Bt0
cannot both hold.
Assume then that j̄ ∈ J is such that s0Aej̄ > λ0 s0Bej̄ and let J′ = J \{j̄}.



Using the induction hypothesis, introduce v′ ∈ R and s′ ∈ ∆(I)
associated to the I× J′ submatrices A′ of A and B′ of B, with
s′A′ ≥ v′ s′B′.
Now v′ ≥ µ0 > λ0 since there are less constraints for player 1 in the
reduced game, then consider s = αs′+(1−α)s0 with α ∈ (0,1) and
note that for α small enough:

(αs′+(1−α)s0)(A−λ0B)ej > 0,

for j̄, thanks to s0 and for j ∈ J′, because of s′ : a contradiction to the
definition of λ0.

Application: Let B be a square matrix with positive entries. Take
A = Id, then there exists an eigenvector associated to a positive
eigenvalue with positive components (Perron–Frobenius).



Equilibria and variational inequalities
Equilibrium: existence

The main result is the following:

Theorem 3.1 (Nash, 1951 [34], Glicksberg, 1952 [16], Fan,
1952 [13])
1) If Si is a compact convex subset of a topological vector space, gi is
continuous, quasi concave w.r.t. si, for all i ∈ I, the set of equilibria is
compact and non empty.
2) If Si is compact , gi is continuous, for all i ∈ I, the mixed extension
of the game has an equilibrium.
Proof : 1) By continuity and compactness, for each profile t ∈ S, the
set E(t) of profiles not eliminated by t, (recall that a profile t eliminates
a profile s if there exists a player i ∈ I with gi(ti,s−i)> gi(s)), is a
compact subset of S.
By the intersection property, to prove the existence of an equilibrium,
it is enough to show that for any family {t(k) ∈ S;k ∈ K finite} the
intersection ∩k∈KE(t(k)) is not empty.



We are then in a finite dimensional framework (replace each Si by
co({ti(k),k ∈ K})) and an equilibrium of the reduced game will be in
∩k∈KE(t(k)).
Now gi quasi-concave w.r.t. si implies that for all s, BR(s) is convex.
By continuity and compactness, BR(s) is compact and non-empty for
each s. The joint continuity hypothesis implies that the graph of the
correspondence BR is closed.
Then use a fixed point theorem, Fan, 1952 [13], for the
correspondence BR on S.
The corresponding fixed point is an equilibrium.
2) If Si is compact, Σi = ∆(Si) is convex and compact (for the weak∗
topology).
Similarly if gi is continuous on S, its extension to Σ = ∏j∈I Σj is
continuous (again for the weak∗ topology), using for example the
Stone-Weierstrass theorem to get the joint continuity, and multilinear.
Then use Part 1.

For more results, see e.g. MSZ I.4, LRS Ch. 4.



Equilibrium: finite case

We consider here the case of a finite game: finitely many players,
each player i ∈ I having finitely many strategies in Si.
The finiteness assumption allows for a more precise analysis of
equilibria.

Lemma 3.1
σ is a mixed equilibrium iff for all i and all si ∈ Si:

gi(si,σ−i)< max
ti∈Si

gi(ti,σ−i)⇒ σ
i(si) = 0.

Proof :
Follows from gi(σ i,σ−i) = maxti∈Si gi(ti,σ−i) and
gi(σ i,σ−i) = ∑ti∈Si σ i(ti)gi(ti,σ−i).

In other words, the support of σ i is included in BRi(σ−i), for all i ∈ I.



Theorem 3.2 (Nash, 1950 [33])
Every finite game G has a mixed equilibrium.
Proof :
Define the Nash map f from Σ to Σ by:

f (σ)i(si) =
σ i(si)+(gi(si,σ−i)−gi(σ))+

1+∑ti∈Si(gi(ti,σ−i)−gi(σ))+

where a+ = max(a,0).
f is well defined and with values in Σ: f (σ)i(si)≥ 0 and
∑si∈Si f (σ)i(si) = 1.
Since f is continuous and Σ convex, compact, Brouwer’s fixed point
theorem, Brouwer, 1910 [6], implies the existence of σ ∈ Σ with
f (σ) = σ .
Let us prove that such σ is an equilibrium.



Otherwise there exists i ∈ I and ui ∈ Si with gi(ui,σ−i)−gi(σ)> 0
hence ∑ti∈Si(gi(ti,σ−i)−gi(σ))+ > 0.
Since there exists si with σ i(si)> 0 and gi(si,σ−i)≤ gi(σ) one obtains:

σ
i(si) = f (σ)i(si) =

σ i(si)

1+∑ti∈Si(gi(ti,σ−i)−gi(σ))+
< σ

i(si)

a contradiction.
Note that reciprocally any equilibrium is a fixed point of f since all
quantities (gi(ti,σ−i)−gi(σ))+ vanish.



Algebraic approach
Recall that each Si is finite, with cardinal mi. Let m = Πimi.
A game can thus be identified with a point in RNm. For example, with
2 players having each 2 strategies one obtains g ∈ R8 specified by:

L R
T (a1,a2) (a3,a4)
B (a5,a6) (a7,a8)

Proposition 3.1
The set of equilibria is defined by a finite family of large polynomial
inequalities.
Proof : σ is an equilibrium iff:

∑
si∈Si

σ
i(si)−1 = 0, σ

i(si)≥ 0, ∀si ∈ Si,∀i ∈ I,

gi(σ) = ∑
s=(s1,...,sN)∈S

[∏
i

σ
i(si)]gi(s)≥ gi(ti,σ−i),∀ti ∈ Si,∀i ∈ I,

the unknown being the family {σ i(si)}.
We used the linearity to make the comparison only to extreme points.



Corollary 3.1
The set of equilibria is semi-algebraic.
It is a finite union of closed connected components.
Example 1:

L M R
T (2,1) (1,0) (1,1)
B (2,0) (1,1) (0,0)

The set of equilibria is described by the thick line below.

There is one connected component, homeomorphic to a segment.



Example 2 : Kohlberg and Mertens, 1986 [23].

L M R
T (1,1) (0,−1) (−1,1)
m (−1,0) (0,0) (−1,0)
B (1,−1) (0,−1) (−2,−2)

There is only one connected component of equilibria which is of the
form:

hence homeomorphic to a circle in Σ.



In addition each point of the circle is the limit of a sequence of
equilibria of close-by games, like the next one, with ε > 0:

L M R
T (1,1− ε) (ε,−1) (−1− ε,1)
m (−1,−ε) (−ε,ε) (−1+ ε,−ε)
B (1− ε,−1) (0,−1) (−2,−2)

with equilibrium [(ε/(1+ ε),1/(1+ ε),0);(0,1/2,1/2)] close to
[(0,1,0);(0,1/2,1/2)].



Equilibria and variational inequalities

For various classes of games, equilibria can be represented as
solutions of variational inequalities, see e.g. Sorin and Wan, 2016
[42].
Finite games
Define the vector payoff function Vgi : Σ−i −→ RSi

by
Vgi(σ−i)u = gi(u,σ−i),u ∈ Si. Hence gi(σ) = 〈Vgi(σ−i),σ i〉 and σ ∈ Σ is
a Nash equilibrium iff:

〈Vgi(σ−i),σ i− τ
i〉 ≥ 0, ∀τ i ∈ Σ

i, ∀i ∈ I.
Concave games
I is a finite set of players, for each i ∈ I, Xi ⊂ Hi(Hilbert) is the convex
set of actions of player i and Gi : X = ∏j Xj −→ R his payoff function.
Assume Gi concave and C 1 w.r.t. xi.
Then x ∈ X is a Nash equilibrium iff:

〈∇iGi(x),xi− yi〉Hi ≥ 0, ∀yi ∈ Xi, ∀i ∈ I.
where ∇i stands for the gradient of Gi w.r.t. xi.



Population games
I is a finite set of populations of non atomic players; for each i ∈ I, Si

is the finite set of actions of population i and Xi = ∆(Si) is the simplex
over Si. xiu is the proportion of players in population i that play u ∈ Si.
Given Ki : X −→ RSi

, Kiu(x) is the payoff of a member of population i
using the action u ∈ Si given the configuration x.
Then x ∈ X is an equilibrium, Wardrop (1952) [48], iff:

xiu > 0⇒ Kiu(x)≥ Kiv(x), ∀u,v ∈ Si, ∀i ∈ I. (8)

which is:

〈Ki(x),xi−yi〉= ∑
u∈Si

Kiu(x)(xiu−yiu)≥ 0, ∀yi ∈Xi, ∀i∈ I.

or
〈K(x),x− y〉= ∑

i
〈Ki(x),xi− yi〉 ≥ 0, ∀y ∈ X



A typical example is congestion games: i corresponds to the type of
the agent and u to the link in a network.
Consider the following Pigou’s example.
Two roads, T and B link the origin o to the destination d. On T the
cost is x if the congestion is x. On B there is a constant cost of 1.
Consider two populations of size 1/2 each.

Since the agents are nonatomic they will all choose T if x < 1, hence
the only equilibrium is (s1,s2) = (1,1), where si is the proportion of T
for i, thus inducing a cost of 1.



Note that in the case of two players controlling each a mass 1/2 the
only equlibrium is (2/3,2/3).
Finally if the mass is not splittable, the players use mixed strategies
and the set of equilibria is of the form: one player uses T and the
other is indifferent between T and B.

•

•

(0,1)

(0,0)

(1,1)

(1,0)

(2
3 ,

2
3)

Remark that the social optimum is obtained for si = 1/2, i = 1,2.



General case

Consider a finite collection of convex compact sets Xi ⊂ Hi (Hilbert),
and evaluation mappings φ i : X = ∏j Xj→ Hi, i ∈ I.

Definition 3.1
NE(φ) is the set of x ∈ X satisfying:

〈φ(x),x− y〉 ≥ 0, ∀y ∈ X (9)

where 〈φ(x),x− y〉= ∑i〈φ i(x),xi− yi〉Hi .

Remark that all the previous sets of equilibria can be written this way.
We denote by Γ(φ) a game with evaluation φ .



Let ΠC denotes the projection from H to the closed convex set C and
T the map from X to itself defined by:

T(x) = ΠX[x+φ(x)]

Proposition 3.2
NE(φ) is the set of fixed points of T.
Proof : The characterization of the projection gives:

〈x+φ(x)−ΠX[x+φ(x)],y−ΠX[x+φ(x)]〉 ≤ 0, ∀y ∈ X,

hence ΠC[x+φ(x)] = x is the solution iff x ∈ NE(φ).

Corollary 3.2
Assume φ continuous on X. Then NE(φ) 6= /0.

Proof : The map x 7→ΠC[x+φ(x)] is continuous from the convex
compact set X to itself, hence a fixed point exists.



Lemma 3.2
An alternative characterization of NE(φ) is the set of solutions of :

ΠTX(x̂)(φ(x̂)) = 0 (10)

where TC(x) is the tangent cône to C, closed and convex, at x ∈ C.

Proof :
Recall that:

ΠTX(x)(y) = lim
h→0

ΠX(x+h y)− x
h

.

These results are standard in the theory of Variational Inequalities,
Kinderlehrer and Stampacchia,1980 [22], Facchinei and Pang, 2007
[12], and used in Operations Research areas, see e.g. Dafermos,
1980 [10], Dupuis and Nagurney, 1993 [11], Nagurney and
Zhang,1996 [32].



Specific classes

Supermodular games

Endow the euclidean space Rn, with the product (partial) order x≥ y
iff xi ≥ yi for all i.
S⊂ Rn is a lattice if for all x,y ∈ S: sup{x,y} ∈ S and inf{x,y} ∈ S.
Recall the version of the fixed point theorem in this framework.

Theorem 3.3 (Tarski, 1955 [43])
Let S⊂ Rn be a non empty compact lattice and f an increasing
function from S to itself.
Then f has a fixed point.



Consider a strategic game G, where for each i ∈ I, Si is a non-empty
compact subset of Rmi and gi is upper semi continuous in si for each
fixed s−i.
Assume moreover that the game is supermodular, i.e. :
(i) For all i, Si is a lattice in Rmi .
(ii) gi has increasing differences in (si,s−i):

gi(si,s−i)−gi(s′i,s−i)≥ gi(si,s′−i)−gi(s′i,s′−i)

as soon as si ≥ s′i and s−i ≥ s′−i.
(iii) gi is supermodular w.r.t. si: ∀s−i ∈ S−i,

gi(si,s−i)+gi(s′i,s−i)≤ gi(si∨ s′i,s−i)+gi(si∧ s′i,s−i).



Proposition 3.3 (Topkis, 1979 [45])
Under the previous hypotheses, the game G has an equilibrium.

Proof :
For each i and s−i, BRi(s−i) is a non-empty compact lattice of Rmi .
If s−i ≥ s′−i, ∀t′i ∈ BRi(s′−i), ∃ti ∈ BRi(s−i) such that ti ≥ t′i.
Apply Tarski’s theorem to the maximal element of the best reply map.



Potential games
A) Finite case
A real function P defined on S is a potential, Monderer and Shapley,
1996 [31], for the finite game (g,S) if:

gi(si,u−i)−gi(ti,u−i) = P(si,u−i)−P(ti,u−i),∀si, ti ∈ Si,u−i ∈ S−i,∀i ∈ I.
(11)

This means that the impact due to a change of action of player i is the
same on gi and on P, for all i ∈ I. In particular one can use P to check
the equilibrium condition.

B) Evaluation functions
A real function W, of class C 1 on a neighborhood Ω of X, is a
potential for the game with evaluation φ if for each i ∈ I, there is a
strictly positive function µ i(x) defined on X such that:〈

∇iW(x)−µ
i(x)φ i(x),yi− xi〉= 0, ∀x,y ∈ X,∀i ∈ I, (12)

where ∇i is the gradient w.r.t. xi.



Theorem 3.4
Let Γ(φ) be a game with potential W.
1. Every local maximum of W is an equilibrium of Γ(φ).
2. If W is concave on X, then any equilibrium of Γ(φ) is a global
maximum of W on X.
Proof : The condition implied by a local maximum is :

〈∇W(x),x− y〉 ≥ 0, ∀y ∈ X

hence in particular :

〈∇iW(x),xi− yi〉 ≥ 0, ∀yi ∈ Xi

so that :
〈∇iφ

i(x),xi− yi〉 ≥ 0, ∀yi ∈ Xi.

The inverse statement is clear.



Minority game

Consider a three player game where each of the players has to
choose one of two rooms A,B. The payoff is one for a player being
alone (if any) and 0 otherwise.

Pure equilibria are of the form (A,B,B) and mixed equilibria of the
form (A,B,?). In addition there is a symmetric one where each player
uses (1/2,1/2). The set of equilibria is homeomorphic to a circle plus
an isolated point.



(0,0,0)

σ1(B)σ1(B)

σ2(B)

σ3(B)

This is a potential game.



Dissipative games

A game Γ(φ) is dissipative, if φ is dissipative i.e. satisfies:

〈φ(x)−φ(y),x− y〉 ≤ 0, ∀ (x,y) ∈ X×X.

Alternatively, −φ is "monotone"; recall that the gradient of a C 1

convex function is monotone.

This notion appears for strategic games in Rosen, 1965 [38].
Hofbauer and Sandholm, 2009 [19] use the terminology “stable
games” in the framework of population games.



A basic example corresponds to two-person zero-sum games.

Proposition 3.4 (Rockafellar, 1970 [37])
Assume f : X = X1×X2→ R, C 1 and concave/convex.
Then φ = (∇1f ,−∇2f ) is dissipative.
Proof :

f (y1,x2)− f (x1,x2)≤ 〈∇1f (x1,x2),y1− x1〉

f (x1,y2)− f (y1,y2)≤ 〈∇1f (y1,y2),x1− y1〉

f (x1,y2)− f (x1,x2)≥ 〈∇2f (x1,x2),y2− x2〉

f (y1,x2)− f (y1,y2)≥ 〈∇2f (y1,y2),x2− y2〉

so that :

〈∇1f (x1,x2)−∇1f (y1,y2),x1−y1〉+〈−∇2f (x1,x2)+∇2f (y1,y2),x2−y2〉≤ 0

which is
〈φ(x)−φ(y),x− y〉 ≤ 0.



Definition 3.2
Let SE(φ) be the set of x ∈ X satisfying:

〈φ(y),x− y〉 ≥ 0, ∀y ∈ X.

Note that SE(φ) is convex but may be empty.

Proposition 3.5 (Minty, 1967 [29])
Assume φ dissipative and X convex, compact.
Then SE(φ) is non-empty.
Proof : Let :

Sy = {x ∈ X;〈φ(y),x− y〉 ≥ 0,}

so that SE(φ) = ∩y∈XSy hence by compactness it is enough to
establish the following:
Claim
For any finite collection yi ∈ X, i ∈ I, there exists x ∈ co{yi, i ∈ I} such
that:

〈φ(yi),x− yi〉 ≥ 0, ∀i ∈ I. (13)



Consider the finite two-person zero-sum game defined by the
following I× I matrix A :

Aij = 〈φ(yj),yi− yj〉.

Introduce the decomposition : A = B+C with B = 1
2 [A+t A] and

C = 1
2 [A−

t A].
The crucial point is that B has non negative coefficients since:

2Bij = 〈φ(yj),yi− yj〉+ 〈φ(yi),yj− yi〉= 〈φ(yj)−φ(yi),yi− yj〉 ≥ 0.

Hence an optimal strategy u ∈ ∆(I) in the game C (antisymmetric
hence with value 0) gives uAej = uBej +uCej ≥ 0,∀j ∈ I, i.e. :

∑
i∈I

ui〈φ(yj),yi− yj〉 ≥ 0, ∀j ∈ J.

Letting x = ∑i uiyi this writes as (13).



Proposition 3.6 (Minty, 1967 [29])
If Γ(φ) is dissipative and φ is continuous:

SE(φ) = NE(φ).

Proof :
One direction is clear and does not use continuity.
If φ is dissipative and x is an equilibrium, then:

〈φ(y),x− y〉 ≥ 〈φ(x),x− y〉 ≥ 0, ∀y ∈ X.

On the other hand, given z ∈ X, x ∈ SE(φ) and t ∈ (0,1], let
y = x+ t(z− x), hence:

〈φ(x+ t(z− x)), t(x− z)〉 ≥ 0.

Dividing by t and then letting t go to 0 gives, by continuity of φ , the
result.
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