Independence number of random trees

E. Bellin

Laboratoire CMAP École Polytechnique

2023

イロト イポト イヨト イヨト

Let G=(V,E) be a finite graph and $S \subset V$. The set S is

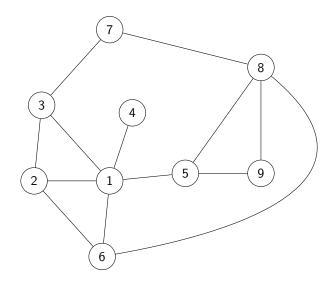
• An independent set if no pair of vertices of S are linked with an edge.

∃ ► < ∃ ►</p>

Let G=(V,E) be a finite graph and $S \subset V$. The set S is

- An independent set if no pair of vertices of S are linked with an edge.
- A maximal independent set if it is an independent set with maximal cardinality.

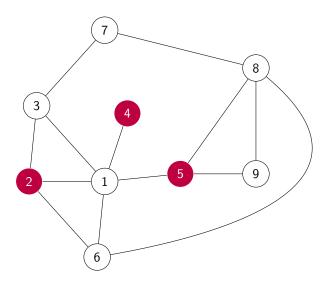
Exemple



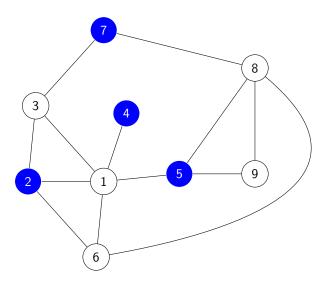
▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

≣ ∽ < [⊙] 3/40

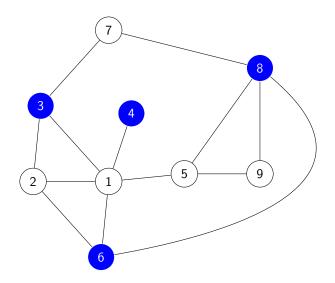
Exemple



$S = \{2, 4, 5\}$ is an independent set .



Exemple



 $S = \{3, 4, 6, 8\}$ is also a maximal independent set .

- Let G=(V,E) be a finite graph and $S \subset V$. The set S is
 - An independent set if no pair of vertices of S are linked with an edge.
 - A maximal independent set if it is an independent set with maximal cardinality.

Remark : The maximal independent set is not unique.

3

- Let G=(V,E) be a finite graph and $S \subset V$. The set S is
 - An independent set if no pair of vertices of S are linked with an edge.
 - A maximal independent set if it is an independent set with maximal cardinality.

Remark : The maximal independent set is not unique.

Définition

The size of a maximal independent set of G is called the independence number of G and is denoted by $\alpha(G)$.

<ロト <回ト < 回ト < 回ト < 回ト = 三日

Complexité

Théorème

Determining if G = (V, E) has an independent set of size $\geq k$ is NP-complete (meaning that it is NP and NP-hard).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Complexité

Théorème

Determining if G = (V, E) has an independent set of size $\geq k$ is NP-complete (meaning that it is NP and NP-hard).

Proof :

• NP : OK

- 4 週 ト - 4 三 ト - 4 三 ト -

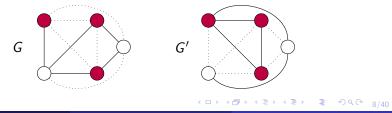
Complexité

Théorème

Determining if G = (V, E) has an independent set of size $\geq k$ is NP-complete (meaning that it is NP and NP-hard).

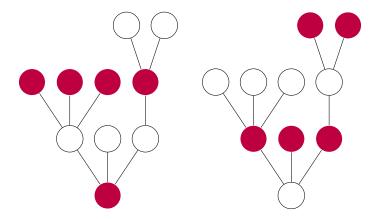
Proof :

- NP : OK
- NP-hard : Take G' = (V, E') where E' is the complementary of E. Then G has an independent set of size ≥ k is equivalent to say that G' has a clique of size ≥ k. And the clique problem is well known to be NP-hard.



• If T is a tree with n vertices, then $\alpha(T) \ge n/2$.

• If T is a tree with n vertices, then $\alpha(T) \ge n/2$.



< ロ > < 同 > < 三 > < 三 >

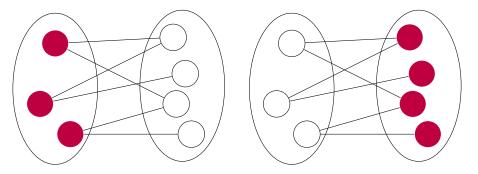
Bornes inférieures

- If T is a tree with n vertices, then $\alpha(T) \ge n/2$.
- More generally, if G is a bipartite graph with n vertices, then $\alpha(G) \ge n/2$.

A (10) × (10) × (10) ×

Bornes inférieures

- If T is a tree with n vertices, then $\alpha(T) \ge n/2$.
- More generally, if G is a bipartite graph with n vertices, then $\alpha(G) \ge n/2$.



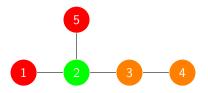
Let T be a tree and v a vertex of T, we colour v in :

- green if it belongs to no maximal independent set
- red if it belongs to all maximal independent set
- orange if it belongs to some maximal independent set but not all.

11 / 40

Let T be a tree and v a vertex of T, we colour v in :

- green if it belongs to no maximal independent set
- red if it belongs to all maximal independent set
- orange if it belongs to some maximal independent set but not all.



11 / 40

 $n_g(T) :=$ number of green vertices. $n_r(T) :=$ number of red vertices. $n_o(T) :=$ number of orange vertices.

Proposition

•
$$\alpha(T) = n_r(T) + \frac{n_o(T)}{2}$$
.

・ロト ・ 伊ト ・ ヨト ・ ヨト ・ ヨー ・ のへで

 $n_g(T) :=$ number of green vertices. $n_r(T) :=$ number of red vertices. $n_o(T) :=$ number of orange vertices.

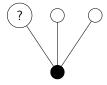
Proposition

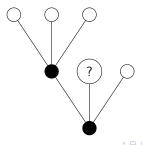
•
$$\alpha(T) = n_r(T) + \frac{n_o(T)}{2}$$
.
• $\beta(T) = n_g(T) + \frac{n_o(T)}{2} = n - \alpha(T)$.

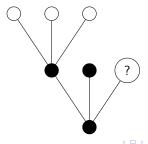
イロト イポト イヨト イヨト 二日 …

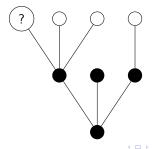
Définition

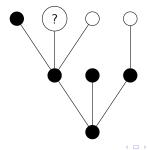
Définition

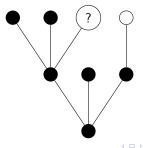


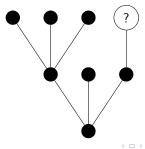




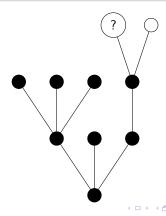




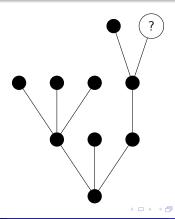




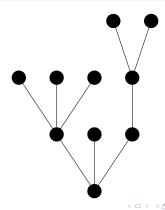
Définition



Définition



Définition



Un dessin

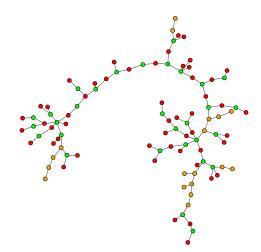


Figure: Tricolouration of a BGW tree with 100 vertices and a Poisson offspring distribution of parameter 1.

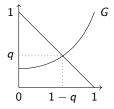
3

• • = • • =

Let T_n be a BGW tree with reproduction law μ , conditionned on having n vertices.Let

$$G(t) := \sum_{k=0}^{\infty} \mu(k) t^k.$$

Let q be the unique solution of G(1-q) = q in [0,1]. Suppose that μ has mean 1.



3

Résultat

Let T_n be a BGW tree with reproduction law μ , conditionned on having n vertices. Let

$$G(t) := \sum_{k=0}^{\infty} \mu(k) t^k.$$

Let q be the unique solution of G(1-q) = q in [0,1]. Suppose that μ has mean 1.

Théorème (B.)

The following convergences hold in L^p for every p > 0:

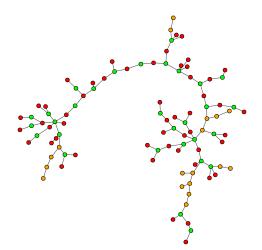
$$\frac{n_r(T_n)}{n} \xrightarrow{L^p} \frac{q}{n \to \infty} \xrightarrow{q} \frac{q}{1 + G'(1 - q)}, \qquad \frac{n_o(T_n)}{n} \xrightarrow{L^p} \frac{2 q G'(1 - q)}{1 + G'(1 - q)},$$
$$\frac{n_g(T_n)}{n} \xrightarrow{L^p} \frac{1 - q + (1 - 2q)G'(1 - q)}{1 + G'(1 - q)}.$$

(ロト 4 課 ト 4 語 ト 4 語 ト 三語 - のの

26 / 40

Fin

Merci de votre attention



2

2023

イロト イロト イヨト イヨト

For a graph G = (V, E) and a vertex $v \in V$, we denote by deg(v) the degree of v in G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ۹ペー

For a graph G = (V, E) and a vertex $v \in V$, we denote by deg(v) the degree of v in G.

Théorème (Caro & Wei, Alon & Spencer)

For any graph G = (V, E) we have the lower bound :

 $\alpha(G) \geq \sum_{\nu \in V} \frac{1}{\deg(\nu) + 1}.$

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨーのへで 28/40

Proof : Let \leq be a total ordering of V chosen uniformly at random. Set

$$I := \{ v \in V : \forall w \in V, \{ v, w \} \in E \implies v \preceq w \}.$$

イロト イロト イヨト イヨト

Proof : Let \leq be a total ordering of V chosen uniformly at random. Set

$$I := \{ v \in V : \forall w \in V, \{ v, w \} \in E \implies v \preceq w \}.$$

Then

$$\mathbb{E}\left[\#I\right] = \mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{v \in I}\right] = \sum_{v \in V} \mathbb{P}\left(v \in I\right).$$

29 / 40

2

イロト イロト イヨト イヨト

Proof : Let \leq be a total ordering of V chosen uniformly at random. Set

$$I := \{ v \in V : \forall w \in V, \{ v, w \} \in E \implies v \preceq w \}.$$

Then

$$\mathbb{E}\left[\#I\right] = \mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{v \in I}\right] = \sum_{v \in V} \mathbb{P}\left(v \in I\right).$$

Notice that $v \in I$ iff v is the smallest for \leq among its neighbours. Hence

$$\mathbb{P}(v \in I) = \frac{1}{\deg(v) + 1}.$$

29 / 40

▲□▶ ▲□▶ ★ 三▶ ★ 三▶ - 三 - のへで、

Proof : Let \leq be a total ordering of V chosen uniformly at random. Set

$$I:=\{v\in V\,:\,\forall w\in V,\,\{v,w\}\in E\implies v\preceq w\}.$$

Then

$$\mathbb{E}\left[\#I\right] = \mathbb{E}\left[\sum_{v \in V} \mathbb{1}_{v \in I}\right] = \sum_{v \in V} \mathbb{P}\left(v \in I\right).$$

Notice that $v \in I$ iff v is the smallest for \leq among its neighbours. Hence

$$\mathbb{P}(v \in I) = \frac{1}{\deg(v) + 1}.$$

Thus we can find a total order \leq such that $\#I \geq \sum_{v \in V} \frac{1}{\deg(v)+1}$. To conclude, notice that I is an independent set

29 / 40

Bornes supérieures

Définition

Let G=(V,E) be a finite graph and $M \subset E$. The set M is

- A matching if no pair of edges of M share a same vertex.
- A maximal matching if it is an matching with maximal cardinality.

30 / 40

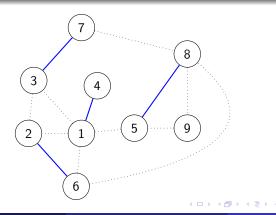
3 x 3

Bornes supérieures

Définition

Let G=(V,E) be a finite graph and $M \subset E$. The set M is

- A matching if no pair of edges of M share a same vertex.
- A maximal matching if it is an matching with maximal cardinality.



Définition

Let G=(V,E) be a finite graph and $M \subset E$. The set M is

- A matching if no pair of edges of *M* share a same vertex.
- A maximal matching if it is an matching with maximal cardinality.

Denote by $\beta(G)$ the size of a maximal matching of G.

Théorème (Konig, Egervary)

For any graph G = (V, E) with n vertices, we have the upper bound :

 $\alpha(G) \leq n - \beta(G)$

with equality if G is bipartite.

< □ ▶ < @ ▶ < E ▶ < E ▶ E のへで 31/40

Définition

Let G=(V,E) be a finite graph and $M \subset E$. The set M is

- A matching if no pair of edges of *M* share a same vertex.
- A maximal matching if it is an matching with maximal cardinality.

Denote by $\beta(G)$ the size of a maximal matching of G.

Théorème (Konig, Egervary)

For any graph G = (V, E) with n vertices, we have the upper bound :

$$\alpha(G) \leq n - \beta(G)$$

with equality if G is bipartite.

Remark : $\beta(G)$ can be computed in $O(n^3)$ (Edmond, Gabow).

□ ► < E ► < E ► E < < 31/40</p>

Ρ

Théorème (B.)

The following convergences hold in L^p for every p > 0:

$$\frac{n_r(T_n)}{n} \xrightarrow{L^p} \frac{q}{n \to \infty} \xrightarrow{q} \frac{q}{1 + G'(1 - q)}, \qquad \frac{n_o(T_n)}{n} \xrightarrow{L^p} \frac{2 q G'(1 - q)}{1 + G'(1 - q)},$$

$$\frac{n_g(T_n)}{n} \xrightarrow{L^p} \frac{1 - q + (1 - 2q)G'(1 - q)}{1 + G'(1 - q)}.$$
Proof that $\mathbb{E}\left[\frac{n_r(T_n)}{n}\right] \to \frac{q}{1 + G'(1 - q)}$:

Let v_n be a random vertex chosen uniformly in T_n .

32 / 40

Théorème (B.)

The following convergences hold in L^p for every p > 0:

$$\frac{n_r(T_n)}{n} \xrightarrow{L^p} \frac{q}{n \to \infty} \xrightarrow{q} \frac{q}{1 + G'(1 - q)}, \qquad \frac{n_o(T_n)}{n} \xrightarrow{L^p} \frac{2 q G'(1 - q)}{1 + G'(1 - q)},$$

$$\frac{n_g(T_n)}{n} \xrightarrow{L^p} \frac{1 - q + (1 - 2q)G'(1 - q)}{1 + G'(1 - q)}.$$
Proof that $\mathbb{E}\left[\frac{n_r(T_n)}{n}\right] \to \frac{q}{1 + G'(1 - q)}$:
Let v_n be a random vertex chosen uniformly in T_n .
Then $\mathbb{E}\left[\frac{n_r(T_n)}{n}\right] = \mathbb{P}(v_n \text{ is red in } T_n).$

2

32/40 32/40 A couple (τ, u) where τ is a tree and u a vertex of τ is called a pointed tree.

▲圖▶ ▲屋▶ ▲屋≯

A couple (τ, u) where τ is a tree and u a vertex of τ is called a pointed tree.

For a pointed tree (τ, u) and $h \in \mathbb{N}$ we denote by $[(\tau, u)]_h$ the subtree of τ formed by the vertices at graph distance $\leq h$ from u.

33 / 40

3

A couple (τ, u) where τ is a tree and u a vertex of τ is called a pointed tree.

For a pointed tree (τ, u) and $h \in \mathbb{N}$ we denote by $[(\tau, u)]_h$ the subtree of τ formed by the vertices at graph distance $\leq h$ from u.

Définition

We say that (τ_n, u_n) converges locally towards (τ, u) if for every $h \in \mathbb{N}$ there is a n_0 such that for all $n \ge n_0$,

$$[(\tau_n, u_n)]_h = [(\tau, u)]_h.$$

This convergence defines a topology called the local topology.

33 / 40

ъ

Théorème (Stufler)

 (T_n, v_n) converges in distribution for the local topology towards a random pointed tree (T^*, u_0) .

34 / 40

Théorème (Stufler)

 (T_n, v_n) converges in distribution for the local topology towards a random pointed tree (T^*, u_0) .

Consequence :

$$\mathbb{E}\left[\frac{n_r(T_n)}{n}\right] = \mathbb{P}\left(v_n \text{ is red in } T_n\right) \to \mathbb{P}\left(u_0 \text{ is red in } T^*\right).$$

34/40

34 / 40

3

A 3 >

Théorème (Stufler)

 (T_n, v_n) converges in distribution for the local topology towards a random pointed tree (T^*, u_0) .

Consequence :

$$\mathbb{E}\left[\frac{n_r(T_n)}{n}\right] = \mathbb{P}\left(v_n \text{ is red in } T_n\right) \to \mathbb{P}\left(u_0 \text{ is red in } T^*\right).$$

 $\mathbb{P}(u_0 \text{ is red in } T^*) = ?$

34/40

34 / 40

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ のへで

What is (T^*, u_0) ?

What is (T^*, u_0) ?

Start with an infinite spine of vertices u_0, u_1, u_2, \ldots

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣…

Arbre limite

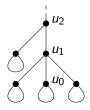
What is (T^*, u_0) ?

Each vertex u_i with i > 0, gets offspring according to the law

$$\hat{\mu}(k) := k \mu(k).$$

And u_{i-1} is identified to one of u_i 's children uniformly at random.

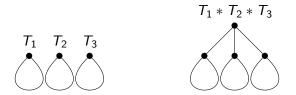
What is (T^*, u_0) ?



Finally, each vertex of the current tree gives birth to a independent copy of a BGW tree with law μ .

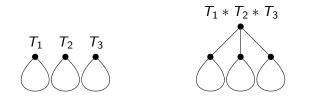
3

For T_1, \ldots, T_k rooted trees we denote by $T_1 * \cdots * T_k$ the tree obtained by linking all the roots of T_1, \ldots, T_k to a new vertex.



3

For T_1, \ldots, T_k rooted trees we denote by $T_1 * \cdots * T_k$ the tree obtained by linking all the roots of T_1, \ldots, T_k to a new vertex.



Lemme

The root of $T_1 * \cdots * T_k$ is red iff all the roots of T_1, \ldots, T_k are non-red.

イロト イポト イヨト イヨト ヨー シタぐ

Fin de la preuve

Denote by q the probability that the root of a BGW tree with law μ is red. From the previous lemma we deduce that

$$q = \sum_{k \ge 0} \mu(k)(1-q)^k = G(1-q).$$

ъ

A (10) × (10) × (10) ×

Fin de la preuve

Denote by q the probability that the root of a BGW tree with law μ is red. From the previous lemma we deduce that

$$q = \sum_{k \ge 0} \mu(k)(1-q)^k = G(1-q).$$

Let \tilde{T} be the tree obtained from T^* by cutting the edge between u_0 and u_1 and keeping the component containing u_1 . Let \tilde{q} be the probability that u_1 is red in \tilde{T} . Then, from the lemma again,

$$\widetilde{q}=\sum_{k\geq 1}k\mu(k)(1-q)^{k-1}(1-\widetilde{q})=(1-\widetilde{q})G'(1-q).$$

39 / 40

Fin de la preuve

Denote by q the probability that the root of a BGW tree with law μ is red. From the previous lemma we deduce that

$$q = \sum_{k \ge 0} \mu(k)(1-q)^k = G(1-q).$$

Let \tilde{T} be the tree obtained from T^* by cutting the edge between u_0 and u_1 and keeping the component containing u_1 . Let \tilde{q} be the probability that u_1 is red in \tilde{T} . Then, from the lemma again,

$$\widetilde{q}=\sum_{k\geq 1}k\mu(k)(1-q)^{k-1}(1-\widetilde{q})=(1-\widetilde{q})G'(1-q).$$

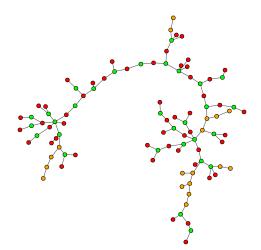
Finally,

$$\mathbb{P}(u_0 \text{ is red in } T^*) = \sum_{k \ge 0} \mu(k)(1-q)^k(1-\widetilde{q}) = rac{q}{1+G'(1-q)}.$$

39 / 40

Fin

Merci de votre attention



イロト イロト イヨト イヨト