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Context

Figure 1: A nonsmooth variant of the Frank-Wolfe
algorithm for solving the toy problem
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Projection-free first-order optimization methods,
such as the Frank-Wolfe algorithm [4] and con-
ditional gradient methods [7], have proven to be
useful for many machine learning and data sci-
ence problems [1] due to their ability to han-
dle complex constraint sets without requiring
possibly expensive projection operations. These
methods rely on solving a linear minimization
subproblem over the feasible domain at each iter-
ation, making them attractive for large-scale op-
timization problems [3]. However, their analysis
was traditionally relegated to smooth objective
functions.

State of the Art

Recent works in this area have focused on min-
imizing objectives of the form f + g over a
convex, compact constraint set C, where f is
C1,1 smooth (continuously differentiable with
Lipschitz-continuous gradient) and convex, and
g is nonsmooth but convex, proper, and lower
semicontinuous [8, 9, 10, 11, 5]. This problem
structure arises in various applications, including
sparse recovery, matrix completion, and more.
We have also come up with some preliminary re-
sults indicating that a Frank-Wolfe approach is also capable of tackling f + g when f is possible
nonconvex, which we plan to expand on in this project.

1 Novelty

Building upon our recent results, this post-doctoral research project aims to push the boundaries of
nonsmooth projection-free optimization by exploring several innovative directions:

1. Adaptive step sizes and smoothing: We will investigate strategies to adapt the step size
schedule based on the local geometry of the problem, utilizing a local curvature estimate. The
goal is to accelerate convergence in practice. We also plan to investigate the smoothing schedule
for the nonsmooth function g and its effect on convergence. Although convergence is guaranteed
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under abstract summability assumptions on the parameters [8], the effects of different choices of
initial values or sequences is not yet understood.

2. Accelerated algorithms: We will explore accelerated variants related to the Conditional Gra-
dient Sliding [6] and Boosted Frank-Wolfe [2] approaches, which utilize more than one call to
the linear minimization oracle per iteration. The aim will be to prove convergence rates and
investigate their performance numerically.

2 Objectives

The primary objective of this post-doctoral research project is to find new and analyze new variants
of projection-free optimization methods for nonsmooth problems. We aim to develop novel algorithms
that improve upon the theoretical convergence rates and practical performance of existing techniques
by leveraging adaptive step sizes, smoothing schedules, and multiple calls to the linear minimization
oracle at each iteration.

Furthermore, we plan to demonstrate our theoretical claims in practice by implementing the pro-
posed algorithms as efficient, open-source software packages in python. This will facilitate their adop-
tion by the broader research community and enable their application to problems in various domains
such as machine learning, signal processing, and imaging.

Desired profile

The desired candidate should have experience with theoretical analysis of optimization algorithms, in
particular first-order methods. Experience and familiarity with vectorized Python programming, in
particular with the common deep learning libraries (PyTorch, JAX, or TensorFlow) or at least with
NumPy, will be necessary.
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