A nasty cone with nice properties – new issues in copositive optimization

Immanuel Bomze, Universität Wien

COST MINLP Workshop@IHP

Paris, 1 October 2013

Overview

- 1. Review: IP Methods, Barriers, LP and SDP
- 2. Linear Conic, and Copositive Optimization (COP)
 - 3. NP-hard problems represented as COPs
 - 4. Copositivity tests and certificates
 - 5. Approximation hierarchies a survey

Review: IP Revolution in Linear Optimization

Linear Optimization Problem (LP): n variables in a vector $\mathbf{x} \in \mathbb{R}^n$, linear objective $\mathbf{c}^\top \mathbf{x}$; m linear constraints $A\mathbf{x} = \mathbf{b}$ (m < n linear equations); nonnegativity constraints $\mathbf{x} \ge \mathbf{o}$: means min_i $x_i \ge 0$.

Simplex Algorithm **[Dantzig '47]**: many variables (n - m) zero; exchange vertices of feasible set (polyhedron) until optimality. In almost all practical cases, $\leq 3m$ exchange steps necessary. Nasty examples **[Klee/Minty '72]**: can need up to 2^m steps.

Interior Point (IP) Algorithms: all n variables positive; **[Yudin/Nemirovski/Shor '76+, Khachian '79+]**: ellipsoid m. Only $K(m+n)^2$ steps necessary in worst case but impractical !

Barrier functions: IP methods made practical

Projective methods [Dikin '67], [Karmarkar '84]: polynomial & practical.

Also can approximate in worst case optimal solution to arbitrary accuracy in polynomial time.

Modern variants:

Barrier function $\beta(\mathbf{x}) = -\sum_i \log(x_i) \nearrow \infty$ if $x_i \searrow 0$ ensures $x_i > 0$ if incorporated into objective:

 $\min \left\{ \mathbf{c}^{\top} \mathbf{x} + \gamma \beta(\mathbf{x}) : A \mathbf{x} = \mathbf{b} \right\} \text{ nonlinear, with parameter } \gamma > 0.$ Given γ , solve this only approximately; decrease γ and iterate!

Many computing issues, success with increased computation power.

Semidefinite Optimization (SDP) versus LP

Instead of vector x now symmetric matrix $X = X^{\top}$ of variables; instead of $\mathbf{x} \ge \mathbf{0}$ now psd. constraint $X \succeq O$: means $\lambda_{\min}(X) \ge 0$.

Again logarithmic barrier

$$\beta(X) = -\log \det X = -\sum_i \log \lambda_i(X) \nearrow \infty \quad \text{if} \quad \lambda_{\min}(X) \searrow 0.$$

Again linear objective and m linear constraints:

$$\min \{ \langle C, X \rangle : \langle A_i, X \rangle = b_i (i = 1..m), X \succeq O \},$$

where $\langle C, X \rangle = \text{trace} (CX) = \sum_{i,j} C_{ij} X_{ij}.$

Recall that LP can be written as

$$\min \{ \langle C, X \rangle : \langle A_i, X \rangle = b_i (i = 1..m), X \ge O \}$$

General form of conic linear optimization

Let \mathcal{K} be a convex cone of X matrices. Conic linear program:

 $\min \{ \langle C, X \rangle : \langle A_i, X \rangle = b_i (i = 1..m), X \in \mathcal{K} \}, \text{ barrier ??}$

Familiar cases:

$$\mathcal{K} = \mathcal{N} = \left\{ X = X^\top : X \ge O \right\} = \mathcal{N}^* \dots \text{ LP, barrier} : -\sum_{i,j} \log X_{ij},$$

and

$$\mathcal{K} = \mathcal{P} = \left\{ X = X^\top : X \succeq O \right\} = \mathcal{P}^* \dots \mathsf{SDP}, \text{ barrier}: -\sum_i \log \lambda_i(X).$$

In above cases, the dual cone of \mathcal{K} ,

$$\mathcal{K}^* = \left\{ S = S^\top : \langle S, X \rangle \ge 0 \text{ for all } X \in \mathcal{K} \right\}$$

coincides with \mathcal{K} (self-duality), but in general \mathcal{K}^* differs from \mathcal{K} .

Copositive optimization (COP), duality

A very special matrix cone:

$$\mathcal{K} = \operatorname{conv} \left\{ \mathbf{x} \mathbf{x}^{\top} : \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \ge \mathbf{o} \right\},$$

the cone of completely positive matrices, with its dual cone

 $\mathcal{K}^* = \left\{ S = S^\top \text{ is copositive; means: } \mathbf{x}^\top S \mathbf{x} \ge \mathbf{0} \text{ if } \mathbf{x} \ge \mathbf{o} \right\} \neq \mathcal{K}.$ Well known relations:

 $\mathcal{K} \subset \mathcal{P} \cap \mathcal{N} \subset \mathcal{P} + \mathcal{N} \subset \mathcal{K}^* \dots$ strict for $n \geq 5$.

Primal-dual pair in (COP):

$$p^* = \inf \left\{ \langle C, X \rangle : \langle A_i, X \rangle = b_i, X \in \mathcal{K} \right\}$$

and

$$d^* = \sup \left\{ \mathbf{b}^\top \mathbf{y} : C - \sum_i y_i A_i \in \mathcal{K}^* \right\}.$$

Usual weak $(d^* \le p^*)$ and strong $(d^* = p^*)$ duality results hold.

Copositive cone ******

Nonnegative cone ${\mathcal N}$

Completely positive cone \thickapprox

So – why nasty ? (and why nice ?)

Nasty aspects: geometry – while boundaries $\partial \mathcal{P}$ and $\partial \mathcal{N}$ are nice, $\partial \mathcal{K}^*$ is not (contains matrices of full rank, or no zero entries).

Extremal rays of \mathcal{K}^* : [Baumert '66, '67, Hildebrand '12]; interior points of \mathcal{K}^* : strict copositivity, $\mathbf{x}^\top S \mathbf{x} > 0$ if $\mathbf{x} \in \mathbb{R}^n_+ \setminus \{\mathbf{o}\}$.

Extremal rays of \mathcal{K} : $X = \mathbf{x}\mathbf{x}^{\top}$ with $\mathbf{x} \in \mathbb{R}^{n}_{+}$, so have rank one; interior points of \mathcal{K} : [Dür/Still '08], [Dickinson '10].

Nasty aspects: complexity – decision problems " $S \in \mathcal{K}^*$?" or " $X \in \mathcal{K}$?" are NP-hard [Dickinson/Gijben '13]; caution: not every convex optimization problem is easy !

Why nice ? For instance, because ...

Constrained fractional QPs are COPs

Consider

$$\psi = \min\left\{f(\mathbf{x}) = \frac{\mathbf{x}^{\top} C \mathbf{x} + 2\mathbf{c}^{\top} \mathbf{x} + \gamma}{\mathbf{x}^{\top} B \mathbf{x} + 2\mathbf{b}^{\top} \mathbf{x} + \beta} : A\mathbf{x} = \mathbf{a}, \, \mathbf{x} \in \mathbb{R}^{n}_{+}\right\}.$$

Applications: engineering (friction and resonance problems – complementary eigenvalues), repair of inconsistent linear systems.

Problem is NP-hard, many inefficient local solutions may coexist.

Theorem [Preisig '96; Amaral/B./Júdice '12]: We have

$$\psi = \min\left\{ \langle \overline{C}, X \rangle : \langle \overline{B}, X \rangle = 1, \, \langle \overline{A}, X \rangle = 0, \, X \in \mathcal{K} \right\},\$$

under mild conditions, where

$$\overline{A} = \begin{bmatrix} \mathbf{a}^{\top}\mathbf{a} & -\mathbf{a}^{\top}A \\ -A^{\top}\mathbf{a} & A^{\top}A \end{bmatrix}, \quad \overline{B} = \begin{bmatrix} \beta & \mathbf{b}^{\top} \\ \mathbf{b} & B \end{bmatrix}, \quad \overline{C} = \begin{bmatrix} \gamma & \mathbf{c}^{\top} \\ \mathbf{c} & C \end{bmatrix}$$

COP formulation of the Maximum Clique Problem (MCP)

Consider an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $\#\mathcal{V} = n$ vertices. Clique $\mathcal{S} \subseteq \mathcal{V}$ is *maximal* if \mathcal{S} is not contained in a larger clique. Clique \mathcal{S}^* is a *maximum* clique if

 $\#\mathcal{S}^* = \max \{ \#\mathcal{T} : \mathcal{T} \text{ clique in } \mathcal{G} \} .$

Finding the *clique number* $\omega(\mathcal{G}) = \#S^*$ is an NP-complete combinatorial optimization problem, which can be formulated as continuous optimization problem, namely a COP ($E = ee^{\top}$):

Theorem [Motzkin/Straus '65, B.et al.'00]: For $Q_{\mathcal{G}} = E - A_{\mathcal{G}}$

$$\frac{1}{\omega(\mathcal{G})} = \min \{ \langle Q_{\mathcal{G}}, X \rangle : \langle E, X \rangle = 1, X \in \mathcal{K} \}$$

= max { $y \in \mathbb{R} : Q_{\mathcal{G}} - yE \in \mathcal{K}^* \}$.

Thus: a good barrier for \mathcal{K}^* would reduce MCP to line search !

General Mixed-Binary QPs and copositive programming

Theorem [Burer '09]: Any Mixed-Binary Quadratic Program

 $\min\left\{\frac{1}{2}\mathbf{x}^{\top}Q\mathbf{x} + \mathbf{c}^{\top}\mathbf{x} : A\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathbb{R}^{n}_{+}, x_{j} \in \{0, 1\}, all \ j \in B\right\}$ can (under mild conditions) be expressed as COP:

$$\min\left\{\frac{1}{2}\langle \hat{Q}, \hat{X} \rangle : \mathcal{A}(\hat{X}) = \hat{\mathbf{b}}, \, X \in \mathcal{K}\right\}$$

where \hat{X} and \hat{Q} are $(n + 1) \times (n + 1)$ matrices, and the size of $(\mathcal{A}, \hat{\mathbf{b}})$ is polynomial in the size of $(\mathcal{A}, \mathbf{b})$.

Special cases: continuous QP ($B = \emptyset$) or binary QP – e.g., the Maximum-Cut Problem is a COP:

$$\max\left\{\frac{1}{4}\mathbf{y}^{\top}L\mathbf{y}:\mathbf{y}\in\{-1,1\}^n\right\}\,.$$

Also QAP and graph partitioning are COPs [Povh/Rendl '07].

Linear mixed-binary problems with uncertain objective

[Natarajan/Teo/Zheng '11] consider mixed-binary LP with stochastic objective function, only the first two moments known: $z^* = \sup \left\{ \mathbb{E} \max \left\{ \tilde{\mathbf{c}}^\top \mathbf{x} : A\mathbf{x} = \mathbf{b} , \ \mathbf{x} \in \mathbb{R}^n_+ \cap \{0,1\}_n^B \right\} : \tilde{\mathbf{c}} \sim (\mu, \Sigma)_+ \right\},$ with $\{0,1\}_n^B = \left\{ \mathbf{x} \in \mathbb{R}^n : x_j \in \{0,1\} \text{ for all } j \in B \right\}$ and where $\tilde{\mathbf{c}} \sim (\mu, \Sigma)_+$ means: prob.distr. with support \mathbb{R}^n_+ and $\mathbb{E}(\tilde{\mathbf{c}}) = \mu, \quad \mathbb{E} \left[\tilde{\mathbf{c}} \tilde{\mathbf{c}}^\top \right] = \Sigma.$ Such distributions exist if $\begin{bmatrix} 1 & \mu^\top \\ \mu & \Sigma \end{bmatrix}$ is in the interior of \mathcal{K} .

COP formulation of optimization under uncertainty

Under the same conditions as in [Burer '09],

 $z^* = \max \{ \operatorname{trace}(Z) : A\mathbf{x} = \mathbf{b}, \, (AXA^{\top})_{ii} = b_i^2 \text{ for all } i \in [1:n] \text{ and} \\ X_{jj} = x_j \text{ for all } j \in B, \, T_{(\boldsymbol{\mu}, \boldsymbol{\Sigma})}(\mathbf{x}, X, Z) \in \mathcal{K} \} \,,$

where

$$T_{(\boldsymbol{\mu},\boldsymbol{\Sigma})}(\mathbf{x},X,Z) = \begin{bmatrix} \mathbf{1} & \boldsymbol{\mu}^{\top} & \mathbf{x}^{\top} \\ \boldsymbol{\mu} & \boldsymbol{\Sigma} & Z^{\top} \\ \mathbf{x} & Z & X \end{bmatrix}.$$

For any optimal solution (\mathbf{x}^*, X^*, Z^*) , construct sequence $\tilde{\mathbf{c}}_k \in \mathbb{R}^n_+$ such that $\mathbb{E}\tilde{\mathbf{c}}_k \to \mu$ and $\mathbb{E}\left[\tilde{\mathbf{c}}_k \tilde{\mathbf{c}}_k^\top\right] \to \Sigma$ as $k \to \infty$ as well as

$$\mathbb{E}\left[\max\left\{\tilde{\mathbf{c}}_{k}^{\top}\mathbf{x}: A\mathbf{x}=\mathbf{b}, \ \mathbf{x}\in\mathbb{R}^{n}_{+}\cap\{0,1\}_{n}^{B}\right\}\right]\to z^{*}=\mathsf{trace}(Z^{*}).$$

Works also if (μ, Σ) are not known exactly but only some bounds.

Convex quadratic underestimators over polytopes

Given indefinite $Q \notin \mathcal{P}$, search for best convex quadratic underestimator of $f(\mathbf{x}) = \mathbf{x}^{\top}Q\mathbf{x}$ over polytope $P = \text{conv}(\mathbf{v}_1, \dots, \mathbf{v}_n)$. Copositive approach [Locatelli/Schoen '10]: for $V = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ let $\mathbf{x} = V\mathbf{v}$ with $\mathbf{v} \in \Delta^n \subseteq \mathbb{R}^n_+$ be barycentric coordinates of \mathbf{x} w.r.t. V, and $Q_P = V^{\top}QV$. Then search for g_P (or r_P) with

 $f(\mathbf{x}) = q_P(\mathbf{v}) = \mathbf{v}^\top Q_P \mathbf{v} \ge r_P(\mathbf{v}) = \mathbf{v}^\top U_P \mathbf{v} = g_P(\mathbf{x})$ for all $\mathbf{x} \in P$ where $g_P(\mathbf{x}) = \mathbf{x}^\top S \mathbf{x} + 2\mathbf{c}^\top \mathbf{x} + \gamma$ with $S \in \mathcal{P}$ and

 $U_P = U_P(S, \mathbf{c}, \gamma) = V^{\top}SV + (V^{\top}\mathbf{c})\mathbf{e}^{\top} + \mathbf{e}(V^{\top}\mathbf{c}) + \gamma \mathbf{e}\mathbf{e}^{\top}.$

So $f(\mathbf{x}) \ge g_P(\mathbf{x})$ for all $\mathbf{x} \in P$ means $Q_P - U_P \in \mathcal{K}^*$.

Tight convex QP-underestimators by SDP-COP

Now $g_P(\mathbf{x}) = r_P(\mathbf{v})$ is best such underestimator of $f(\mathbf{x}) = q_P(\mathbf{v})$ if and only if volume difference (integrated convexity gap)

$$\begin{split} &\int_{\Delta} \mathbf{v}^{\top} (Q_P - U_P) \mathbf{v} \, \mathrm{d} \mathbf{v} = \int_{\Delta} [q_P(\mathbf{v}) - r_P(\mathbf{v})] \, \mathrm{d} \mathbf{v} \text{ is minimal.} \\ & \text{But } \int_{\Delta} \mathbf{v}^{\top} A \mathbf{v} \, \mathrm{d} \mathbf{v} = \frac{2}{(n+1)!} \langle E, A \rangle \text{ holds for any } A, \text{ so end up in} \\ & \langle E, Q_P - U_P \rangle \rightarrow \text{ min } ! \qquad \dots \text{ convexity gap} \\ & U_P = V^{\top} S V + (V^{\top} \mathbf{c}) \mathbf{e}^{\top} + \mathbf{e} (V^{\top} \mathbf{c}) + \gamma \mathbf{e} \mathbf{e}^{\top} \\ & (S, \mathbf{c}, \gamma) \in \mathcal{P} \times \mathbb{R}^n \times \mathbb{R} \qquad \dots \text{ convexity} \\ & Q_P - U_P \in \mathcal{K}^* \qquad \dots \text{ underestimation} \\ \dots \text{ lends itself naturally to relaxation of } \mathcal{K}^* \text{ like } \mathcal{P} + \mathcal{N}. \text{ Here it} \end{split}$$

suffices even to require $Q_P - U_P \in \mathcal{N}$ [Locatelli/Schoen '10].

Positive and negative certificates in COP

Positive certificate ($S = C - \sum_i y_i A_i \in \mathcal{K}^*$, i.e., is copositive) gives valid lower bound in COPs by weak duality:

 $\mathbf{b}^{\top}\mathbf{y} \leq d^* \leq p^* \leq \langle C, X \rangle$ for all feasible $X \in \mathcal{K}$.

Negative certificates/basic principle from duality: if $\langle X, S \rangle < 0$,

 $X \in \mathcal{K} \Rightarrow S \notin \mathcal{K}^*$ while $S \in \mathcal{K}^* \Rightarrow X \notin \mathcal{K}$.

Simpler variant of the first: *violating vector* $\mathbf{v} \in \mathbb{R}^n_+$ with $\mathbf{v}^\top S \mathbf{v} < \mathbf{0}$ shows $S \notin \mathcal{K}^*$, and moreover yields improving feasible direction in global nonconvex QPs:

Theorem [B.'92]: Consider local, nonglobal solution $\bar{\mathbf{x}}$ to a QP. If \mathbf{v} is viol.vector for suitable S, t > 0 (polyn.-time construction), then $f(\bar{\mathbf{x}} + t\mathbf{v}) < f(\bar{\mathbf{x}})$... escape from inefficient solution $\bar{\mathbf{x}}$.

Copositivity certificates: preprocessing

Theorem [B.'87]: For any row *i*, we have (a) If $S_{ii} < 0$, then $\mathbf{v} = \mathbf{e}_i$ is a violating vector; (b) if $S_{ii} = 0 > S_{ij}$, then $\mathbf{v} = (S_{jj} + 1)\mathbf{e}_i - S_{ij}\mathbf{e}_j$ is violating; (c) if $S_{ij} \ge 0$ for all *j*, then $S \in \mathcal{K}^*$ iff $R = [S_{jk}]_{j,k \ne i}$ copositive; $\mathbf{u} = [u_j]_{j \ne i}$ violating for $R \Rightarrow \mathbf{v} = [0, \mathbf{u}] \in \mathbb{R}^n_+$ violating for *S*. (d) if $S_{ij} \le 0 < S_{ii}$ for all $j \ne i$, then $S \in \mathcal{K}^*$ iff

$$T = [S_{ii}S_{jk} - S_{ij}S_{ik}]_{j,k \neq i}$$
 is copositive;

 $\mathbf{w} = [w_j]_{j \neq i} \text{ violating for } T \Rightarrow$ $\mathbf{v} = [-\sum_{j \neq i} S_{ij} w_j, S_{ii} \mathbf{w}] \in \mathbb{R}^n_+ \text{ violating for } S;$ (e) if $S_{ij} < -\sqrt{S_{ii} S_{jj}} < 0$, then $\mathbf{v} = \sqrt{S_{jj}} \mathbf{e}_i + \sqrt{S_{ii}} \mathbf{e}_j$ is violating.

After preprocessing ...

... and preceding simple sign tests, drop appropriate rows/columns; it remains to test (possibly smaller) S for copositivity where **(a,b,c)** all diagonal entries $S_{ii} > 0$; **(c,d)** sign of entries (off the diagonal) change in every row; and **(e)** every negative entry $S_{ij} \ge -\sqrt{S_{ii}S_{jj}}$.

Final simplification (D any positive-definite diagonal matrix): S is copositive if and only if

$$S' = \left[\frac{S_{ij}}{\sqrt{S_{ii}S_{jj}}}\right]_{i,j} \ (= D^{-1}SD^{-1})$$

is copositive. We have $S'_{ii} = 1$ and $S'_{ij} \ge -1$ for all i, j.

A normal form for copositive matrices

For any symmetric matrix S define the negative sign-graph $\mathcal{G}_{-}(S)$ via the adjacency matrix: $A_{ij} = 1$ if and only if $S_{ij} < 0$, $i \neq j$.

Theorem: If S is copositive with $S_{ii} > 0$ for all i, then there are: a matrix $N = N^{\top}$ with no negative elements; a positive-definite diagonal matrix D; and a loopless undirected graph \mathcal{G} such that

$$S = D[I_n - A_{\mathcal{G}}]D + N.$$

We can choose diag N = o and diag $D^2 = diag S$.

Proof. Take $\mathcal{G} = \mathcal{G}_{-}(S)$ (no other choice) and use $S'_{ij} \ge -1$.

Easy copositivity detection

Theorem: After ordering S_{ii} such that they increase with *i*, get

$$S = \begin{bmatrix} O & O \\ O & D[I_r - A_{\mathcal{G}}]D \end{bmatrix} + N,$$

where $r \leq n$ with equality iff the O blocks are not there.

[Pardalos/Vavasis'91]: QP with one neg.eigenvalue is NP-hard.

How about: copositivity detection with one negative entry ?

This is easy, even with $\leq n$ negatives, if fairly distributed !

Theorem: Suppose S contains at most one negative element per row. Then $S \in \mathcal{K}^*$ iff $S_{ii} \ge 0$ and $S_{ij} \ge -\sqrt{S_{ii}S_{jj}}$ for all i, j. In fact, then $S \in \mathcal{P} + \mathcal{N}$.

Extends linear-time detection for tridiagonal matrices [B.'00].

Difference-of-convex (d.c.) approach to copositivity

Given: simplex $\Delta = \operatorname{conv}(\mathbf{w}_1, \dots, \mathbf{w}_n)$, matrix Q; test Δ -copositivity of Q: is $\mathbf{x}^\top Q \mathbf{x} \ge 0$ for all $\mathbf{x} \in \Delta$? D.c. decomposition: $Q = Q_+ - Q_-$ with $\{Q_+, Q_-\} \subset \mathcal{P}$. Non-convex positivity cone Pos $Q = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x}^\top Q_- \mathbf{x} \le \mathbf{x}^\top Q_+ \mathbf{x}\}$:

 $Q \text{ is } \Delta\text{-copositive } \iff \Delta \subset \operatorname{Pos} Q,$ any $\mathbf{v} \in \mathbb{R}_+ \Delta \setminus \operatorname{Pos} Q$ is a violating vector.

Convex QP-copositivity tests approximate Pos Q:

Suppose for simplicity that both Q_+ and Q_- are nonsingular.

Rescale $\mathbf{v}_i^- = \frac{1}{\sqrt{\mathbf{w}_i^\top Q - \mathbf{w}_i}} \mathbf{w}_i$; if $\min_i (\mathbf{v}_i^-)^\top Q_+ (\mathbf{v}_i^-) < 1$, a violating vector in Δ is found; else proceed to solve following convex QP.

D.c.-based convex QP tests for copositivity

Solve convex QP over rescaled simplex

$$\boldsymbol{\mu}_{\Delta}^{-} = \min\left\{ \mathbf{v}^{\top} \boldsymbol{Q}_{+} \mathbf{v} : \mathbf{v} \in \mathsf{conv} \ (\mathbf{v}_{1}^{-}, \dots, \mathbf{v}_{n}^{-}) \right\} \,,$$

If $\mu_{\Delta}^- \ge 1$, then Q is Δ -copositive; else use solution to above QP for ω -subdivision of Δ , branch.

Another convex QP works in parallel: renormalize differently, $\mathbf{v}_i^+ = \frac{1}{\sqrt{\mathbf{w}_i^\top Q_+ \mathbf{w}_i}} \mathbf{w}_i$; if $s^2 = \max_i (\mathbf{v}_i^+)^\top Q_- (\mathbf{v}_i^+) > 1$, a violating

vector in Δ is found; else proceed to solve following convex QP:

$$\mu_{\Delta}^{+} = \min\left\{\mathbf{v}^{\top}Q_{-}\mathbf{v}: \mathbf{v} \in \operatorname{conv} (\mathbf{v}_{1}^{+}, \dots, \mathbf{v}_{n}^{+})\right\}.$$

If $\mu_{\Delta}^+ \leq s^2$, then Q is Δ -copositive; else branch as above.

LP-based shortcut at the root

Consider *convex maximization* QP

$$\mu^{+} = \sup \left\{ \mathbf{x}^{\top} Q_{-} \mathbf{x} : \mathbf{x}^{\top} Q_{+} \mathbf{x} \le \mathbf{1}, \, \mathbf{x} \in \mathbb{R}_{+}^{n} \right\} \,.$$

H)

If $\mu^+ \leq 1$, then Q is copositive; now include convex set

$$B_{+} = \left\{ \mathbf{x} \in \mathbb{R}_{+}^{n} : \mathbf{x}^{\top} Q_{+} \mathbf{x} \leq 1 \right\}$$

by tope $P = \text{conv} (\mathbf{z}_{0}, \dots, \mathbf{z}_{n}) \supset B_{+}.$

into po

Then

$$\mu^+ \leq \max\left\{\mathbf{x}^\top Q_- \mathbf{x} : \mathbf{x} \in P\right\} = \max_i \mathbf{z}_i^\top Q_- \mathbf{z}_i.$$

P is easily found if $\mathbf{p} = Q_+ \mathbf{x} \in \text{int } \mathbb{R}^n_+$ for some $\mathbf{x} \in \partial B_+$. Search for this p by LP with arbitrary f, e.g., $f = e = [1, ..., 1]^{\top}$: $\max \left\{ \mathbf{f}^{\top} \mathbf{x} : Q_{+} \mathbf{x} \ge \mathbf{e}, \, \mathbf{x} \ge \mathbf{o} \right\} \, .$

Sufficient copositivity condition

Theorem [B./Eichfelder '12]: Given a d.c.d. $Q = Q_+ - Q_-$, choose an $\mathbf{x} \in \mathbb{R}^n_+$ such that $\mathbf{p} = Q_+\mathbf{x}$ has only positive entries. If

$$(Q_{-})_{ii} \mathbf{x}^{\top} Q_{+} \mathbf{x} \leq (Q_{+} \mathbf{x})_{i}^{2}$$
 for all i ,

then Q is copositive.

Simulation: 5000 random matrices in $\mathcal{P} + \mathcal{N}$, sizes up to 200; with the choice $\mathbf{f} = Q_+ \mathbf{e}$, only one (!) failed the test.

Even without using the LP, the simple choice of $\mathbf{x} = \mathbf{e}$ worked in some cases: almost 2000 matrices satisfied $\min_i(Q_+\mathbf{e})_i > 0$, over 1250 of these passed above test.

Lyapunov functions for switched systems

Consider a linear ODE

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t)$$
 with $\mathbf{x}(0) = \mathbf{x}_0$.

System is asymptotically stable if there is a quadratic Lyapunov function $\mathbf{x}^{\top}P\mathbf{x}$ where P is positive-definite. This is the case if and only if AP + PA is negative-definite.

Additional constraints $C\mathbf{x}(t) \ge \mathbf{o}$ on trajectories: above definiteness criterion on P is too strict.

Switched systems

 $\dot{\mathbf{x}}(t) = A_i \mathbf{x}(t)$ such that $C_i \mathbf{x}(t) \ge \mathbf{0}$, with $\mathbf{x}(0) = \mathbf{x}_0$, i = 1, 2. Find P such that

$$\begin{array}{rcl} \mathbf{x}^{\top} P \mathbf{x} &> & \mathsf{0} \\ \mathbf{x}^{\top} (A_i P + P A_i) \mathbf{x} &< & \mathsf{0} \end{array} \right\} \text{ for all } \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{o}\} \text{ with } C_i \mathbf{x} \geq \mathbf{o} \,. \end{array}$$

Simplicial decomposition – copositive formulation

Consider compact basis

$$B_i = \{ \mathbf{x} \in \mathbb{R}^n : C_i \mathbf{x} \ge \mathbf{o}, \|\mathbf{x}\|_1 = 1 \} ,$$

simplicial decompositions $\mathcal{D}_i = \{\Delta_{i,j}\}$ of B_i , $V_i = \bigcup_i \text{ext } (\Delta_{i,i})$ the set of all vertices of simplices in \mathcal{D}_i ,

 E_i the set of all (undirected) edges of simplices in \mathcal{D}_i .

Then P satisfies the above stability condition if and only if P solves the following system of strict linear inequalities for some suitable \mathcal{D}_i [Bundfuss/Dür '09a]:

$$\mathbf{v}^{\top} P \mathbf{v} > 0 \quad \text{for all } \mathbf{v} \in V_1 \cup V_2$$
$$\mathbf{u}^{\top} P \mathbf{v} > 0 \quad \text{for all } \{\mathbf{u}, \mathbf{v}\} \in E_1 \cup E_2$$
$$\mathbf{v}^{\top} (A_i P + P A_i) \mathbf{v} < 0 \quad \text{for all } \mathbf{v} \in V_i, i = 1, 2,$$
$$\mathbf{u}^{\top} (A_i P + P A_i) \mathbf{v} < 0 \quad \text{for all } \{\mathbf{u}, \mathbf{v}\} \in E_i, i = 1, 2.$$

Existence resolved – reduction to finite linear system

Any solution P to the above system provides a constructive approach to establishing asymptotic stability.

This reduction to a finite system resolves existence question of copositive quadratic Lyapunov functions, posed as an open problem [Camlıbel/Schumacher '04].

Can be also used for:

- copositivity detection [Bundfuss/Dür '08]
 challenged by [B./Eichfelder '12];
- copositive optimization: given objective function C, adaptive construction of the partition \mathcal{D}_i [Bundfuss/Dür 09b].

Approximation hierarchies; positivity cones

... use (direct or adaptive) discretization methods, sum-of-squares conditions, and moment approaches.

For an arbitrary (possibly finite) subset $T \subseteq \mathbb{R}^n_+$, define

$$\mathcal{P}os(T) := \left\{ S = S^{\top} : \mathbf{y}^{\top} S \mathbf{y} \ge \mathbf{0} \text{ for all } \mathbf{y} \in T \right\}.$$

Obvious: $\mathcal{K}^* \subseteq \mathcal{P}os(T)$... polyhedral if T finite.

Already used: $\mathcal{K}^* = \mathcal{P}os(B)$ for any base B of \mathbb{R}^n_+ (e.g. $B = \Delta^n$). Interesting: $\mathcal{K}^* = \mathcal{P}os(\mathbb{N}^n)$ [Buchheim et al.'12].

Instead \mathbb{N}^n finite grid, or equivalent on the standard simplex Δ^n :

$$\mathbb{N}_r^n = \left\{ \mathbf{m} \in \mathbb{N}^n : \sum_{i=1}^n m_i = r \right\} \quad \text{or} \quad \Delta_d^n = \frac{1}{d+2} \mathbb{N}_{d+2}^n \subset \Delta^n$$

Direct discretizations

First (outer) discretization [B./deKlerk'02]:

$$\mathcal{E}_d := \mathcal{P}os(\Delta_d^n) \searrow \mathcal{K}^* \quad \text{as } d \to \infty.$$

Refinement [Yıldırım '11]:

$$\mathcal{Y}_d := \mathcal{P}os(\bigcup_{k=0}^d \Delta_k^n) \subset \mathcal{E}_d,$$

so also $\mathcal{Y}_d \searrow \mathcal{K}^*$ as $d \to \infty$.

Both grids finite – polyhedral approximations, tractable via LP:

$$|\Delta_k^n| = \mathfrak{O}(n^k)$$
 polynomial in n .

Adaptive outer discretizations

Hierarchy \mathcal{H}_d of nested simplicial partitions of Δ^n , as before let $S_{\Delta} = V_{\Delta}^{\top} S V_{\Delta}$ and define [Bundfuss/Dür '08,'09b]

$$\mathcal{B}_d := \left\{ S = S^\top : \text{diag } S_\Delta \ge \mathbf{o} \text{ for all } \Delta \in \mathcal{H}_d \right\} \,,$$

since diag $S_{\Delta} = [\mathbf{v}_i^{\top} S \mathbf{v}_i]$. Again can show under mild conditions: polyhedral $\mathcal{B}_d \searrow \mathcal{K}^*$ as $d \to \infty$.

[B./Teo/Dür '12]: take (lower-level) outer approx. $\mathcal{M} \supseteq \mathcal{K}^*$, replace condition diag $S_{\Delta} \ge \mathbf{o}$ with $S_{\Delta} \in \mathcal{M}$ (above: $\mathcal{M} = \{T = T^{\top} : \text{diag } T \ge \mathbf{o}\}$), and define

$$\mathcal{B}_d(\mathcal{M}) := \left\{ S = S^\top : S_\Delta \in \mathcal{M} \text{ for all } \Delta \in \mathcal{H}_d \right\}$$

... more general outer discretization, but no longer polyhedral if ${\cal M}$ is not a polyhedral cone.

Partition hierarchy \mathcal{H}_d can be chosen to adapt to objective.

Adaptive inner discretizations

Inner discretization: again based on \mathcal{H}_d , now use as above result

$$\mathcal{P}os(\Delta) = \left\{ S = S^{\top} : S_{\Delta} \in \mathcal{K}^* \right\}$$

and

$$\begin{aligned} \mathcal{K}^* &= \mathcal{P}os(\Delta^n) = \bigcap_{\Delta \in \mathcal{H}_d} \mathcal{P}os(\Delta) \\ &= \left\{ S = S^\top : S_\Delta \in \mathcal{K}^* \text{ for all } \Delta \in \mathcal{H}_d \right\} \end{aligned}$$

Now, employing a (lower-level) inner approx. $\mathcal{M} \subset \mathcal{K}^*$, define

$$\mathcal{D}_d(\mathcal{M}) := \left\{ S = S^\top : S_\Delta \in \mathcal{M} \text{ for all } \Delta \in \mathcal{H}_d \right\}$$

[Bundfuss/Dür '08] took $\mathcal{M} = \mathcal{N}$ while [Sponsel et al.'12] take general \mathcal{M} , e.g. $\mathcal{M} = \mathcal{P} + \mathcal{N}$ ($\mathcal{M} = \mathcal{P}$ does not help).

Exhaustivity: $\mathcal{D}_d(\mathcal{M}) \nearrow \mathcal{K}^*$ as $d \to \infty$, if \mathcal{H}_d behaves well.

Sum-of-squares approximation hierarchy

Recall $S \in \mathcal{K}^*$ if f $\mathbf{y}^\top S \mathbf{y} \ge 0$ for all \mathbf{y} s.t. $y_i = x_i^2$, some $\mathbf{x} \in \mathbb{R}^n$. This is guaranteed if *n*-variable polynomial of degree 2(d+2) $p_S^{(d)}(\mathbf{x}) = (\sum x_i^2)^d \mathbf{y}^\top S \mathbf{y} = (\sum x_i^2)^d \sum_{j,k} S_{jk} x_j^2 x_k^2$

is nonnegative for all $\mathbf{x} \in \mathbb{R}^n$. Guaranteed if (a) $p_S^{(d)}$ has no negative coefficients; or if (b) $p_S^{(d)}$ is a sum-of-squares (s.o.s.): $p_S^{(d)}(\mathbf{x}) = \sum_i [f_i(\mathbf{x})]^2$. Approximation cones [Parrilo '00, '03]: $\mathcal{I}_d := \{S = S^\top : p_S^{(d)} \text{ satisfies (a)}\},$

$$\mathcal{S}_d := \{ S = S^\top : p_S^{(d)} \text{ satisfies (b)} \}.$$

LMI representation of s.o.s. approximation cones

Again exhaustivity: S_d , $\mathcal{I}_d \nearrow \mathcal{K}^*$ as $d \to \infty$. Further, \mathcal{I}_d is a polyhedral cone while S_d can be described via LMI's: w.lo.g. $p_S^{(d)}(\mathbf{x}) = \sum_i [h_i(\mathbf{x})]^2$ with homogeneous polynomials h_i :

$$h_i(\mathbf{x}) = \widehat{\mathbf{a}}_i^\top \widehat{\mathbf{x}}$$
 with $\widehat{\mathbf{x}} = [\mathbf{x}^m]_{m \in \mathbb{N}_{d+2}^n}$

the vector of monomials $\mathbf{x}^{\mathbf{m}} = \prod_{i=1}^{n} x_i^{m_i}$ of degree d+2 in \mathbf{x} . Thus

$$p_S^{(d)}(\mathbf{x}) = \sum_i \left[\widehat{\mathbf{a}}_i^{\top} \widehat{\mathbf{x}} \right]^2 = \widehat{\mathbf{x}}^{\top} M_S^{(d)} \widehat{\mathbf{x}},$$

where $M_S^{(d)}$ is a symmetric matrix of large order $r = \binom{n+d+1}{d+2}$, which obviously must be psd. Conversely any such psd. matrix (not unique!) gives a s.o.s. Thus $S_d = \left\{ S = S^\top : M_S^{(d)} \in \mathcal{P} \right\}$.

Refinements of s.o.s. hierarchy

Proceeding to a more compact LMI description, [Peña et al.'07] introduced

$$\begin{aligned} \mathcal{Q}_d &:= \{ S = S^\top : \ (\mathbf{e}^\top \mathbf{x})^d \, \mathbf{x}^\top S \mathbf{x} = \sum_{\mathbf{m} \in \mathbb{N}_d^n} \mathbf{x}^\mathbf{m} \, (\mathbf{x}^\top Q_\mathbf{m} \mathbf{x}) \\ & \text{with} \quad Q_\mathbf{m} \in \mathcal{P} + \mathcal{N} \,, \text{ all } \mathbf{m} \in \mathbb{N}_d^n \} \,, \end{aligned}$$

to arrive at $\mathcal{I}_d \subset \mathcal{Q}_d \subset \mathcal{S}_d$. Admits a recursive description, too.

Tensor description of the higher-order duals $[\mathcal{Q}_d]^*$, and $[\mathcal{I}_d]^*$ provided in [Dong '10], yield outer approximation hierarchy for \mathcal{K} .

These LMI descriptions allow for tractable (well, for small d) SDP implementations in $\mathfrak{O}(n^{2(d+2)})$ variables – expensive but sometimes efficient (cf. Lovász' θ for stability number). Additional methods like warmstarting required [Engau et al.'12].

Lasserre's moment approach

... starts with elementary observation: select T with $\mathbb{R}_+T = \mathbb{R}_+^n$; if μ is an arbitrary Borel measure on T, and $S = S^{\top}$, then

 $\mathbf{x}^{\top} S \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^{n}_{+}$ implies $\int_{T} (\mathbf{x}^{\top} S \mathbf{x}) \, \mu(d\mathbf{x}) \ge 0$. Reverse implication not true for single μ ; idea: require $\int_{T} (\mathbf{x}^{\top} S \mathbf{x}) \, \mu(d\mathbf{x}) \ge 0$ for large enough class of μ 's.

Trivial: all point measures on T. Does not help.

[Lasserre '00, '11]: One choice is $T = \mathbb{R}^n_+$,

$$\left\{\mu: \frac{\mathsf{d}\mu}{\mathsf{d}\mathbf{x}}(\mathbf{x}) = [g(\mathbf{x})]^2 \exp(-\mathbf{e}^\top \mathbf{x}), \ g \text{ a polynomial in } \mathbf{x}\right\}.$$

LMI representation of moment condition

Let $I(d,n) = \bigcup_{k=0}^{d} \mathbb{N}_{d}^{n}$ with $s = \mathfrak{O}(n^{d})$ elements. Then degree dpolynomial $g(\mathbf{x}) = \hat{\mathbf{c}}^{\top} \hat{\mathbf{x}}$ with $\hat{\mathbf{x}} = [\mathbf{x}^{\mathbf{k}}]_{\mathbf{k} \in I(d,n)}$, and with above $\mu_{\hat{\mathbf{c}}}(d\mathbf{x}) = [g(\mathbf{x})]^{2} \exp(-\mathbf{e}^{\top} \mathbf{x}) d\mathbf{x}$ get $\int_{T} (\mathbf{x}^{\top} S \mathbf{x}) \mu(d\mathbf{x}) = \hat{\mathbf{c}}^{\top} M_{d}(S) \hat{\mathbf{c}}$ with large $s \times s$ matrix linear in S:

$$M_d(S) = \left[\sum_{i,j} S_{ij} y_{\mathbf{k}+\mathbf{m}+\mathbf{e}_i+\mathbf{e}_j}\right]_{(\mathbf{k},\mathbf{m})\in I(d,n)^2}$$

where $y_{\mathbf{m}} = \int_T \mathbf{x}^{\mathbf{m}} \exp(-\mathbf{e}^\top \mathbf{x}) d\mathbf{x} = \prod_i (m_i)!$ for all $\mathbf{m} \in \mathbb{N}^n$. With this choice of T and $\mu_{\widehat{\mathbf{c}}}$'s it holds that

$$S \in \mathcal{K}^* \iff M_d(S) \in \mathcal{P}$$
 for all d .

Gives rise to Lasserre's LMI approximation cone

$$\mathcal{L}_d(\mu, T) := \left\{ S = S^\top : M_d(S) \in \mathcal{P} \right\} \searrow \mathcal{K}^* \text{ as } d \to \infty.$$

Recent refinement of moment method

Observation [Dickinson/Povh '12]: $S \in \mathcal{K}^*$ implies even

$$M_d(S) = \int_T (\mathbf{x}^\top S \mathbf{x}) \exp(-\mathbf{e}^\top \mathbf{x}) \, \widehat{\mathbf{x}} \, \widehat{\mathbf{x}}^\top \, \mathrm{d}\mathbf{x} \in \mathcal{K} \,,$$

since it is limit of convex combinations of $\hat{z} \hat{z}^{\top}$ with $\hat{z} \in \mathbb{R}^{s}_{+}$. So can also take a tractable cone \mathcal{A} with $\mathcal{K} \subset \mathcal{A} \subset \mathcal{P}$, a (lower-level) outer approximation of \mathcal{K} , e.g. $\mathcal{A} = \mathcal{P} \cap \mathcal{N}$, to obtain tighter outer approximation of \mathcal{K}^{*} :

Survey of approximation constructions

Name	symbol	mode	method	remarks
B./de Klerk	E	outer	LP	rational grid for Δ^n
Yıldırım	\mathcal{Y}	outer	LP	$\mathcal{Y}\subset\mathcal{E}$, grid
Bundfuss/Dür	\mathcal{B}	outer	LP	simplicial partition
B./Dür/Teo	$\mathcal{B}(\mathcal{M})$	outer	LP	$\mathcal{M} \supset \mathcal{K}^*$
Bundfuss/Dür	\mathcal{D}	inner	LP	simplicial partition
Sponsel et al.	$\mathcal{D}(\mathcal{M})$	inner	LP	$\mathcal{M}\subset\mathcal{K}^*$
Parrilo et al.	\mathcal{I}	inner	LP	coeff $p_S^{(d)} \geq \mathbf{o}$
Parrilo et al.	S	inner	SDP	$p_S^{(d)}$ is a s.o.s.
Peña et al.	\mathcal{Q}	inner	SDP	$\widetilde{\mathcal{I}}\subset\mathcal{Q}\subset\mathcal{S}$
Lasserre	$\mathcal{L}(\mu,T)$	outer	SDP	μ -moments over T
Dickinson/Povh	$\mathcal{L}(\mu,T;\mathcal{A})$	outer	SDP	$\mathcal{L}(\mu,T;\mathcal{A})\subset\mathcal{L}(\mu,T)$

Compact overview of approximation constructions

mode/method	LP	SDP
outer	$\mathcal{E}, \mathcal{Y}, \mathcal{B}(\mathcal{M})$	$\mathcal{L}(\mu,T;\mathcal{A})$
inner	$\mathcal{I}, \ \mathcal{D}(\mathcal{M})$	S, Q

Yet to explore: vary also \mathcal{M} , \mathcal{A} and (T, μ) with d, cf. [Dickinson/Povh '12], [B./Dür/Teo '12].

Selected references in chronological order

[Motzkin/Straus '65] Maxima for graphs and a new proof of a theorem of Turán. *Canadian J. Math.* **17**, 533–540.

[Baumert '66/'67] Extreme copositive quadratic forms I, II. Pacific J. Math. 18, 197–204 and 20, 1–20.

- [B. '87] Remarks on the recursive structure of copositivity, J. Inf. & Optimiz. Sciences 8, 243–260.
- [B. '92] Copositivity conditions for global optimality in indefinite quadratic programming problems, *Czechosl. J. OR* **1**, 7–19.
- [B./Danninger '93] Using copositivity for global optimality criteria in concave quadratic programming problems, *Math. Programming* **62**, 575–580.

[Preisig '96] Copositivity and the minimization of quadratic functions with nonnegativity and quadratic equality constraints, *SIAM Journal of Control and Optimization* **34**, 1135–1150.

- [B. '00] Linear-time detection of copositivity for tridiagonal matrices and extension to block-tridiagonality, *SIAM J.Matrix Anal.Appl.***21**, 840–848.
- [B./Dür/de Klerk/Quist/Roos/Terlaky '00] On copositive programming and standard quadratic optimization problems, *J.o.G.O.* **18**, 301–320.
- [Lasserre '00] Global optimization with polynomials and the problem of moments, *SIAM Journal on Optimization* **11**, 796–817.
- [Parrilo'00] Structured semidefinite programs and semi-algebraic geometry methods in robustness and optimization, Ph.D. thesis, CalTech.
- [de Klerk/Pasechnik '02] Approximation of the stability number of a graph via copositive programming, *SIAM Journal on Optimization* **12**, 875–892.
- [B./de Klerk '02] Solving standard quadratic optimization problems via linear, semidefinite and copositive programming, *J.o.G.O.* **24**, 163–185.
- [Parrilo '03] Semidefinite programming relaxations for semi-algebraic problems. *Mathematical Programming* **696B**, 293–320.

[Camlibel/Schumacher '04], Copositive Lyapunov functions, in: Blondel/Megretski (eds.), Unsolved problems in mathematical *etc.*, Princeton UP 189–193.

[Peña/Vera/Zuluaga '07] Computing the stability number of a graph via linear and semidefinite *etc., SIAM Journal on Optimization* **18**, 87–105.

[Povh/Rendl '07] A copositive programming approach to graph partitioning, SIAM Journal on Optimization 18, 223–241.

[Dür/Still '08] Interior points of the completely positive cone, Electronic J. Linear Algebra **17**, 48–53.

[Bundfuss/Dür '08] Algorithmic copositivity detection by simplicial partition, Linear Algebra and its Applications **428**, 1511–1523.

[Burer '09] On the copositive representation of binary and continuous nonconvex quadratic programs, *Math. Programming* **120**, 479–495.

[Bundfuss/Dür '09a] Copositive Lyapunov functions for switched systems over cones, Systems & Control Letters 58, 342–345.

[Bundfuss/Dür '09b] An adaptive linear approximation algorithm for copositive programs, SIAM Journal on Optimization **20**, 30–53.

[Locatelli/Schoen '10] On convex envelopes and underestimators for bivariate functions, preprint, www.optimization-online.org

[Dickinson '10] An improved characterisation of the interior of the completely positive cone, *Electron. J. Linear Algebra* **20**, 723–729.

[Dong '10] Symmetric tensor approximation hierarchies for the completely positive cone, SIAM Journal on Optimization, to appear.

[Lasserre '11] A new look at nonnegativity on closed sets and polynomial optimization, SIAM Journal on Optimization **21**, 864–885.

[Natarajan/Teo/Zheng '11] Mixed zero-one linear programs under objective uncertainty: a c.p. representation, *Operations Research* **59**, 713–728.

- [Hildebrand '12] The extremal rays of the 5×5 copositive cone, Linear Algebra Appl. **437**, 1538–1547.
- [Sponsel/Bundfuss/Dür '12] An improved algorithm to test copositivity, Journal of Global Optimization **52**, 537–551.
- [B./Eichfelder '12] Copositivity detection by difference-of-convex decomposition and ω -subdivision, *Math. Programming* **138**, 365–400.
- [Amaral/B./Júdice '12] Copositivity and constrained fractional quadratic problems, *Math. Programming* DOI 10.1007/s10107-013-0690-8.
- [Dickinson/Povh '12] Moment approximations for set-semidefinite polynomials, J. Optim. Theory Appl. DOI 10.1007/s10957-013-0279-7.
- [Engau/Anjos/B. '12] Constraint selection in a build-up interior-point cuttingplane method *etc., Math. Methods of OR* **78**, 35–59.
- [Dickinson/Gijben '13] On the computational complexity of membership problems for the completely positive cone and its dual, *Comput. Optim. Appl.* DOI 10.1007/s10589-013-9594-z

Books, surveys, digests, theses etc.

[Ikramov/Saveleva'00] Conditionally definite matrices, J.Math.Sci.99,1–50.

- [Berman/Shaked-Monderer'03] Completely positive matrices, World Scientific, Singapore.
- [Dür '10] Copositive Programming a survey, in: Diehl *et al.* (eds.), Recent Advances in Optimization *etc.*, Springer, pp. 3–20.
- [Burer '12] Copositive programming, in: Anjos/Lasserre (eds.), Handbook of Semidefinite, Cone *etc.*, Springer, pp. 201–218.
- [B. '12] Copositive optimization recent developments and applications, European Journal of Operational Research 216, 509–520.
- [B./Schachinger/Uchida '12] Think co(mpletely)positive ! matrix properties, examples etc., Journal of Global Optimization **52**, 423–445.
- [B./Dür/Teo '12] Copositive optimization, Optima Newsletter 89, 2–10.
- [Dickinson '13] The copositive cone, the completely positive cone and their generalisations, Ph.D. thesis, University of Groningen.