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Review: IP Revolution in Linear Optimization

Linear Optimization Problem (LP):

n variables in a vector x ∈ Rn, linear objective c>x;

m linear constraints Ax = b (m < n linear equations);

nonnegativity constraints x ≥ o : means mini xi ≥ 0.

Simplex Algorithm [Dantzig ’47]: many variables (n−m) zero;

exchange vertices of feasible set (polyhedron) until optimality.

In almost all practical cases, ≤ 3m exchange steps necessary.

Nasty examples [Klee/Minty ’72]: can need up to 2m steps.

Interior Point (IP) Algorithms: all n variables positive;

[Yudin/Nemirovski/Shor ’76+, Khachian ’79+]: ellipsoid m.

Only K(m+ n)2 steps necessary in worst case but impractical !



Barrier functions: IP methods made practical

Projective methods [Dikin ’67], [Karmarkar ’84]:

polynomial & practical.

Also can approximate in worst case optimal solution to arbitrary

accuracy in polynomial time.

Modern variants:

Barrier function β(x) = −
∑
i log(xi)↗∞ if xi ↘ 0 ensures xi > 0

if incorporated into objective:

min
{
c>x + γβ(x) : Ax = b

}
nonlinear, with parameter γ > 0 .

Given γ, solve this only approximately; decrease γ and iterate!

Many computing issues, success with increased computation power.



Semidefinite Optimization (SDP) versus LP

Instead of vector x now symmetric matrix X = X> of variables;

instead of x≥ o now psd. constraint X �O: means λmin(X) ≥ 0.

Again logarithmic barrier

β(X) = − log detX = −
∑
i logλi(X) ↗∞ if λmin(X)↘ 0 .

Again linear objective and m linear constraints:

min {〈C,X〉 : 〈Ai, X〉 = bi (i = 1..m) , X �O} ,
where 〈C,X〉 = trace (CX) =

∑
i,j CijXij.

Recall that LP can be written as

min {〈C,X〉 : 〈Ai, X〉 = bi (i = 1..m) , X ≥O} .



General form of conic linear optimization

Let K be a convex cone of X matrices. Conic linear program:

min {〈C,X〉 : 〈Ai, X〉 = bi (i = 1..m) , X ∈ K} , barrier ??

Familiar cases:

K = N =
{
X = X> : X ≥O

}
= N ∗ . . . LP, barrier:−

∑
i,jlogXij ,

and

K = P =
{
X = X> : X �O

}
= P∗ . . .SDP, barrier:−

∑
ilogλi(X) .

In above cases, the dual cone of K,

K∗ =
{
S = S> : 〈S,X〉 ≥ 0 for all X ∈ K

}
coincides with K (self-duality), but in general K∗ differs from K.



Copositive optimization (COP), duality

A very special matrix cone:

K = conv
{
xx> : x ∈ Rn,x ≥ o

}
,

the cone of completely positive matrices, with its dual cone

K∗ =
{
S = S> is copositive; means: x>Sx ≥ 0 if x ≥ o

}
6=K .

Well known relations:

K ⊂ P ∩N ⊂ P +N ⊂ K∗ . . . strict for n ≥ 5 .

Primal-dual pair in (COP):

p∗ = inf {〈C,X〉 : 〈Ai, X〉 = bi , X ∈ K}
and

d∗ = sup
{
b>y : C −

∑
i yiAi ∈ K∗

}
.

Usual weak (d∗ ≤ p∗) and strong (d∗ = p∗) duality results hold.



Semidefinite cone P





So – why nasty ? (and why nice ?)

Nasty aspects: geometry – while boundaries ∂P and ∂N are nice,
∂K∗ is not (contains matrices of full rank, or no zero entries).

Extremal rays of K∗: [Baumert ’66, ’67, Hildebrand ’12];

interior points of K∗: strict copositivity, x>Sx > 0 if x ∈ Rn+ \ {o}.

Extremal rays of K: X = xx> with x ∈ Rn+, so have rank one;

interior points of K: [Dür/Still ’08], [Dickinson ’10].

Nasty aspects: complexity – decision problems
“S ∈ K∗ ?” or “X ∈ K ?” are NP-hard [Dickinson/Gijben ’13];

caution: not every convex optimization problem is easy !

Why nice ? For instance, because ...



Constrained fractional QPs are COPs

Consider

ψ = min

{
f(x) =

x>Cx + 2c>x + γ

x>Bx + 2b>x + β
: Ax = a , x ∈ Rn+

}
.

Applications: engineering (friction and resonance problems –
complementary eigenvalues), repair of inconsistent linear systems.

Problem is NP-hard, many inefficient local solutions may coexist.

Theorem [Preisig ’96; Amaral/B./Júdice ’12]: We have

ψ = min
{
〈C,X〉 : 〈B,X〉 = 1 , 〈A,X〉 = 0 , X ∈ K

}
,

under mild conditions, where

A =

[
a>a −a>A
−A>a A>A

]
, B =

[
β b>

b B

]
, C =

[
γ c>

c C

]
.



COP formulation of the Maximum Clique Problem (MCP)

Consider an undirected graph G = (V, E) with #V = n vertices.

Clique S ⊆ V is maximal if S is not contained in a larger clique.

Clique S∗ is a maximum clique if

#S∗ = max {#T : T clique in G} .

Finding the clique number ω(G) = #S∗ is an NP-complete
combinatorial optimization problem, which can be formulated as
continuous optimization problem, namely a COP (E = ee>):

Theorem [Motzkin/Straus ’65, B.et al.’00]: For QG = E−AG
1

ω(G) = min
{
〈QG, X〉 : 〈E,X〉 = 1 , X ∈ K

}
= max

{
y ∈ R : QG − yE ∈ K∗

}
.

Thus: a good barrier for K∗ would reduce MCP to line search !



General Mixed-Binary QPs and copositive programming

Theorem [Burer ’09]: Any Mixed-Binary Quadratic Program

min
{

1
2 x>Qx + c>x : Ax = b , x ∈ Rn+ , xj ∈ {0,1}, all j ∈ B

}
can (under mild conditions) be expressed as COP:

min
{

1
2 〈Q̂, X̂〉 : A(X̂) = b̂ , X ∈ K

}
where X̂ and Q̂ are (n + 1) × (n + 1) matrices, and the size of

(A, b̂) is polynomial in the size of (A,b).

Special cases: continuous QP (B = ∅) or binary QP – e.g., the

Maximum-Cut Problem is a COP:

max
{

1
4 y>Ly : y ∈ {−1,1}n

}
.

Also QAP and graph partitioning are COPs [Povh/Rendl ’07].



Linear mixed-binary problems with uncertain objective

[Natarajan/Teo/Zheng ’11] consider mixed-binary LP with

stochastic objective function, only the first two moments known:

z∗ = sup
{
Emax

{
c̃>x : Ax = b , x ∈ Rn+ ∩ {0,1}

B
n

}
: c̃ ∼ (µ,Σ)+

}
,

with {0,1}Bn =
{
x ∈ Rn : xj ∈ {0,1} for all j ∈ B

}
and

where c̃ ∼ (µ,Σ)+ means: prob.distr. with support Rn+ and

E(c̃) = µ , E
[
c̃c̃>

]
= Σ .

Such distributions exist if

[
1 µ>

µ Σ

]
is in the interior of K.



COP formulation of optimization under uncertainty

Under the same conditions as in [Burer ’09],

z∗ = max {trace(Z): Ax = b, (AXA>)ii = b2i for all i ∈ [1:n] and

Xjj = xj for all j ∈ B, T(µ,Σ)(x, X, Z) ∈ K } ,

where

T(µ,Σ)(x, X, Z) =

 1 µ> x>

µ Σ Z>

x Z X

 .
For any optimal solution (x∗, X∗, Z∗), construct sequence c̃k ∈ Rn+
such that Ec̃k → µ and E

[
c̃kc̃
>
k

]
→ Σ as k →∞ as well as

E
[
max

{
c̃>k x : Ax = b , x ∈ Rn+ ∩ {0,1}

B
n

}]
→ z∗ = trace(Z∗) .

Works also if (µ,Σ) are not known exactly but only some bounds.



Convex quadratic underestimators over polytopes

Given indefinite Q /∈ P, search for best convex quadratic undere-

stimator of f(x) = x>Qx over polytope P = conv (v1, . . . ,vn).

Copositive approach [Locatelli/Schoen ’10]: for V = [v1, . . . ,vn]

let x = V v with v ∈ ∆n ⊆ Rn+ be barycentric coordinates of x

w.r.t. V , and QP = V >QV . Then search for gP (or rP ) with

f(x) = qP (v) = v>QPv ≥ rP (v) = v>UPv = gP (x) for all x ∈ P

where gP (x) = x>Sx + 2c>x + γ with S ∈ P and

UP = UP (S, c, γ) = V >SV + (V >c)e>+ e(V >c) + γee> .

So f(x) ≥ gP (x) for all x ∈ P means QP − UP ∈ K∗.



Tight convex QP-underestimators by SDP-COP

Now gP (x) = rP (v) is best such underestimator of f(x) = qP (v)

if and only if volume difference (integrated convexity gap)∫
∆

v>(QP − UP )v dv =
∫

∆
[qP (v)− rP (v)] dv is minimal.

But
∫
∆ v>Av dv = 2

(n+1)!〈E,A〉 holds for any A, so end up in

〈E,QP − UP 〉 → min ! ... convexity gap

UP = V >SV + (V >c)e>+ e(V >c) + γee>

(S, c, γ) ∈ P × Rn × R ... convexity

QP − UP ∈ K∗ ... underestimation

... lends itself naturally to relaxation of K∗ like P + N . Here it

suffices even to require QP − UP ∈ N [Locatelli/Schoen ’10].



Positive and negative certificates in COP

Positive certificate (S = C−
∑
i yiAi ∈ K∗, i.e., is copositive) gives

valid lower bound in COPs by weak duality:

b>y ≤ d∗ ≤ p∗ ≤ 〈C,X〉 for all feasible X ∈ K .

Negative certificates/basic principle from duality: if 〈X,S〉 < 0,

X ∈ K ⇒ S /∈K∗ while S ∈ K∗ ⇒ X /∈K .

Simpler variant of the first: violating vector v ∈ Rn+ with v>Sv < 0

shows S /∈K∗, and moreover yields improving feasible direction in

global nonconvex QPs:

Theorem [B.’92]: Consider local, nonglobal solution x̄ to a QP.

If v is viol.vector for suitable S, t > 0 (polyn.-time construction),

then f(x̄ + tv)<f(x̄) ... escape from inefficient solution x̄.



Copositivity certificates: preprocessing

Theorem [B.’87]: For any row i, we have

(a) If Sii < 0, then v = ei is a violating vector;

(b) if Sii = 0 > Sij, then v = (Sjj + 1)ei − Sijej is violating;

(c) if Sij ≥ 0 for all j, then S ∈ K∗ iff R = [Sjk]j,k 6=i copositive;

u = [uj]j 6=i violating for R ⇒ v = [0,u] ∈ Rn+ violating for S.

(d) if Sij ≤ 0 < Sii for all j 6= i, then S ∈ K∗ iff

T = [SiiSjk − SijSik]j,k 6=i is copositive;

w = [wj]j 6=i violating for T ⇒
v = [−

∑
j 6=i Sijwj, Siiw] ∈ Rn+ violating for S ;

(e) if Sij < −
√
SiiSjj < 0, then v =

√
Sjj ei +

√
Sii ej is violating.



After preprocessing ...

... and preceding simple sign tests, drop appropriate rows/columns;

it remains to test (possibly smaller) S for copositivity where

(a,b,c) all diagonal entries Sii > 0;

(c,d) sign of entries (off the diagonal) change in every row; and

(e) every negative entry Sij ≥ −
√
SiiSjj.

Final simplification (D any positive-definite diagonal matrix):

S is copositive if and only if

S′ =

 Sij√
SiiSjj


i,j

( = D−1SD−1)

is copositive. We have S′ii = 1 and S′ij ≥ −1 for all i, j.



A normal form for copositive matrices

For any symmetric matrix S define the negative sign-graph G−(S)

via the adjacency matrix: Aij = 1 if and only if Sij < 0, i 6= j.

Theorem: If S is copositive with Sii > 0 for all i, then there are:

a matrix N = N> with no negative elements; a positive-definite

diagonal matrix D; and a loopless undirected graph G such that

S = D[In −AG]D +N .

We can choose diag N = o and diag D2 = diag S.

Proof. Take G = G−(S) (no other choice) and use S′ij ≥ −1.



Easy copositivity detection

Theorem: After ordering Sii such that they increase with i, get

S =

[
O O
O D[Ir −AG]D

]
+N ,

where r ≤ n with equality iff the O blocks are not there.

[Pardalos/Vavasis’91]: QP with one neg.eigenvalue is NP-hard.

How about: copositivity detection with one negative entry ?

This is easy, even with ≤ n negatives, if fairly distributed !

Theorem: Suppose S contains at most one negative element
per row. Then S ∈ K∗ iff Sii ≥ 0 and Sij ≥ −

√
SiiSjj for all i, j. In

fact, then S ∈ P +N .

Extends linear-time detection for tridiagonal matrices [B.’00].



Pos Q

∆





LP-based shortcut at the root

Consider convex maximization QP

µ+ = sup
{
x>Q−x : x>Q+x ≤ 1 , x ∈ Rn+

}
.

If µ+ ≤ 1, then Q is copositive; now include convex set

B+ =
{
x ∈ Rn+ : x>Q+x ≤ 1

}
into polytope P = conv (z0, . . . , zn) ⊃ B+.

Then

µ+ ≤ max
{
x>Q−x : x ∈ P

}
= max

i
z>i Q−zi .

P is easily found if p = Q+x ∈ int Rn+ for some x ∈ ∂B+. Search

for this p by LP with arbitrary f , e.g., f = e = [1, . . . ,1]>:

max
{
f>x : Q+x ≥ e , x ≥ o

}
.



Sufficient copositivity condition

Theorem [B./Eichfelder ’12]: Given a d.c.d. Q = Q+ − Q−,
choose an x ∈ Rn+ such that p = Q+x has only positive entries.
If

(Q−)ii x
>Q+x ≤ (Q+x)2

i for all i ,

then Q is copositive.

Simulation: 5000 random matrices in P + N , sizes up to 200;
with the choice f = Q+e, only one (!) failed the test.

Even without using the LP, the simple choice of x = e worked
in some cases:
almost 2000 matrices satisfied mini(Q+e)i > 0,
over 1250 of these passed above test.



Lyapunov functions for switched systems

Consider a linear ODE

ẋ(t) = Ax(t) with x(0) = x0 .

System is asymptotically stable if there is a quadratic Lyapunov
function x>Px where P is positive-definite.
This is the case if and only if AP + PA is negative-definite.

Additional constraints Cx(t) ≥ o on trajectories:
above definiteness criterion on P is too strict.

Switched systems

ẋ(t) = Aix(t) such that Cix(t) ≥ o , with x(0) = x0 , i = 1,2 .

Find P such that

x>Px > 0
x>(AiP + PAi)x < 0

}
for all x ∈ Rn \ {o} with Cix ≥ o .



Simplicial decomposition – copositive formulation

Consider compact basis

Bi = {x ∈ Rn : Cix ≥ o , ‖x‖1 = 1} ,
simplicial decompositions Di =

{
∆i,j

}
of Bi,

Vi =
⋃
j ext (∆i,j) the set of all vertices of simplices in Di,

Ei the set of all (undirected) edges of simplices in Di.

Then P satisfies the above stability condition if and only if P
solves the following system of strict linear inequalities for some
suitable Di [Bundfuss/Dür ’09a]:

v>Pv > 0 for all v ∈ V1 ∪ V2

u>Pv > 0 for all {u,v} ∈ E1 ∪ E2

v>(AiP + PAi)v < 0 for all v ∈ Vi , i = 1,2 ,

u>(AiP + PAi)v < 0 for all {u,v} ∈ Ei , i = 1,2 .





Existence resolved – reduction to finite linear system

Any solution P to the above system provides a constructive ap-
proach to establishing asymptotic stability.

This reduction to a finite system resolves existence question of
copositive quadratic Lyapunov functions, posed as an open pro-
blem [Camlıbel/Schumacher ’04].

Can be also used for:

• copositivity detection [Bundfuss/Dür ’08]
– challenged by [B./Eichfelder ’12];

• copositive optimization: given objective function C,
adaptive construction of the partition Di [Bundfuss/Dür 09b].



Approximation hierarchies; positivity cones

... use (direct or adaptive) discretization methods, sum-of-squares
conditions, and moment approaches.

For an arbitrary (possibly finite) subset T ⊆ Rn+, define

Pos(T ) :=
{
S = S> : y>Sy ≥ 0 for all y ∈ T

}
.

Obvious: K∗ ⊆ Pos(T ) ... polyhedral if T finite.

Already used: K∗ = Pos(B) for any base B of Rn+ (e.g. B = ∆n).

Interesting: K∗ = Pos(Nn) [Buchheim et al.’12].

Instead Nn finite grid, or equivalent on the standard simplex ∆n:

Nnr =

m ∈ Nn :
n∑
i=1

mi = r

 or ∆n
d = 1

d+2 Nnd+2 ⊂∆n .



Direct discretizations

First (outer) discretization [B./deKlerk’02]:

Ed := Pos(∆n
d)↘ K∗ as d→∞ .

Refinement [Yıldırım ’11]:

Yd := Pos(
d⋃

k=0

∆n
k) ⊂ Ed ,

so also Yd ↘ K∗ as d→∞.

Both grids finite – polyhedral approximations, tractable via LP:

|∆n
k | = O(nk) polynomial in n .



Adaptive outer discretizations

Hierarchy Hd of nested simplicial partitions of ∆n, as before let
S∆ = V >∆SV∆ and define [Bundfuss/Dür ’08,’09b]

Bd :=
{
S = S> : diag S∆ ≥ o for all ∆ ∈ Hd

}
,

since diag S∆ = [v>i Svi]. Again can show under mild conditions:
polyhedral Bd ↘ K∗ as d→∞.

[B./Teo/Dür ’12]: take (lower-level) outer approx. M⊇ K∗,
replace condition diag S∆ ≥ o with S∆ ∈M
(above: M =

{
T = T> : diag T ≥ o

}
), and define

Bd(M) :=
{
S = S> : S∆ ∈M for all ∆ ∈ Hd

}
... more general outer discretization, but no longer polyhedral if
M is not a polyhedral cone.

Partition hierarchy Hd can be chosen to adapt to objective.



Adaptive inner discretizations

Inner discretization: again based on Hd, now use as above result

Pos(∆) =
{
S = S> : S∆ ∈ K∗

}
and

K∗ = Pos(∆n) =
⋂

∆∈Hd Pos(∆)

=
{
S = S> : S∆ ∈ K∗ for all ∆ ∈ Hd

}
.

Now, employing a (lower-level) inner approx. M⊂ K∗, define

Dd(M) :=
{
S = S> : S∆ ∈M for all ∆ ∈ Hd

}
.

[Bundfuss/Dür ’08] took M = N while [Sponsel et al.’12] take
general M, e.g. M = P +N ( M = P does not help).

Exhaustivity: Dd(M)↗ K∗ as d→∞, if Hd behaves well.



Sum-of-squares approximation hierarchy

Recall S ∈ K∗ if f y>Sy ≥ 0 for all y s.t. yi = x2
i , some x ∈ Rn.

This is guaranteed if n-variable polynomial of degree 2(d+ 2)

p
(d)
S (x) = (

∑
x2
i )dy>Sy = (

∑
x2
i )d

∑
j,k

Sjkx
2
j x

2
k

is nonnegative for all x ∈ Rn. Guaranteed if

(a) p(d)
S has no negative coefficients; or if

(b) p(d)
S is a sum-of-squares (s.o.s.): p(d)

S (x) =
∑
i[fi(x)]2.

Approximation cones [Parrilo ’00, ’03]:

Id := {S = S> : p(d)
S satisfies (a)} ,

Sd := {S = S> : p(d)
S satisfies (b)} .



LMI representation of s.o.s. approximation cones

Again exhaustivity: Sd, Id ↗ K∗ as d → ∞. Further, Id is a

polyhedral cone while Sd can be described via LMI’s: w.lo.g.

p
(d)
S (x) =

∑
i[hi(x)]2 with homogeneous polynomials hi:

hi(x) = â>i x̂ with x̂ = [xm]m∈Nnd+2

the vector of monomials xm =
n∏
i=1

x
mi
i of degree d+ 2 in x. Thus

p
(d)
S (x) =

∑
i

[
âi
>x̂
]2

= x̂>M(d)
S x̂ ,

where M
(d)
S is a symmetric matrix of large order r =

(
n+d+1
d+2

)
,

which obviously must be psd. Conversely any such psd. matrix

(not unique!) gives a s.o.s. Thus Sd =
{
S = S> : M(d)

S ∈ P
}

.



Refinements of s.o.s. hierarchy

Proceeding to a more compact LMI description, [Peña et al.’07]
introduced

Qd := {S = S> : (e>x)d x>Sx =
∑

m∈Nnd
xm (x>Qmx)

with Qm ∈ P +N , all m ∈ Nnd} ,
to arrive at Id ⊂ Qd ⊂ Sd. Admits a recursive description, too.

Tensor description of the higher-order duals [Qd]∗, and [Id]∗ pro-
vided in [Dong ’10], yield outer approximation hierarchy for K.

These LMI descriptions allow for tractable (well, for small d) SDP
implementations in O(n2(d+2)) variables – expensive but some-
times efficient (cf. Lovász’ θ for stability number). Additional
methods like warmstarting required [Engau et al.’12].



Lasserre’s moment approach

... starts with elementary observation: select T with R+T = Rn+;

if µ is an arbitrary Borel measure on T , and S = S>, then

x>Sx ≥ 0 for all x ∈ Rn+ implies
∫
T

(x>Sx)µ(dx) ≥ 0 .

Reverse implication not true for single µ;

idea: require
∫
T (x>Sx)µ(dx) ≥ 0 for large enough class of µ’s.

Trivial: all point measures on T . Does not help.

[Lasserre ’00, ’11]: One choice is T = Rn+,{
µ :

dµ

dx
(x) = [g(x)]2 exp(−e>x) , g a polynomial in x

}
.



LMI representation of moment condition

Let I(d, n) =
⋃d
k=0 Nnd with s = O(nd) elements. Then degree d

polynomial g(x) = ĉ>x̂ with x̂ = [xk]k∈I(d,n), and with above

µĉ(dx) = [g(x)]2 exp(−e>x)dx get
∫
T

(x>Sx)µ(dx) = ĉ>Md(S) ĉ

with large s× s matrix linear in S:

Md(S) =

∑
i,j

Sij yk+m+ei+ej


(k,m)∈I(d,n)2

where ym =
∫
T xm exp(−e>x)dx =

∏
i(mi)! for all m ∈ Nn.

With this choice of T and µĉ’s it holds that

S ∈ K∗ ⇐⇒ Md(S) ∈ P for all d .

Gives rise to Lasserre’s LMI approximation cone

Ld(µ., T ) :=
{
S = S> : Md(S) ∈ P

}
↘ K∗ as d→∞ .



Recent refinement of moment method

Observation [Dickinson/Povh ’12]: S ∈ K∗ implies even

Md(S) =
∫
T

(x>Sx) exp(−e>x) x̂ x̂> dx ∈ K ,

since it is limit of convex combinations of ẑ ẑ> with ẑ ∈ Rs+.

So can also take a tractable cone A with K ⊂ A ⊂ P, a (lower-

level) outer approximation of K, e.g. A = P∩N , to obtain tighter

outer approximation of K∗:

K∗ ⊂ Ld(µ., T ;A) :=
{
S = S> : Md(S) ∈ A

}
⊂ Ld(µ., T ) .
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Survey of approximation constructions

Name symbol mode method remarks
B./de Klerk E outer LP rational grid for ∆n

Yıldırım Y outer LP Y ⊂ E, grid
Bundfuss/Dür B outer LP simplicial partition
B./Dür/Teo B(M) outer LP M⊃ K∗
Bundfuss/Dür D inner LP simplicial partition
Sponsel et al. D(M) inner LP M⊂ K∗

Parrilo et al. I inner LP coeff p
(d)
S ≥ o

Parrilo et al. S inner SDP p
(d)
S is a s.o.s.

Peña et al. Q inner SDP I ⊂ Q ⊂ S
Lasserre L(µ, T ) outer SDP µ-moments over T
Dickinson/Povh L(µ, T ;A) outer SDP L(µ, T ;A) ⊂ L(µ, T )



Compact overview of approximation constructions

mode/method LP SDP
outer E, Y, B(M) L(µ, T ;A)
inner I, D(M) S, Q

Yet to explore: vary also M, A and (T, µ) with d,

cf. [Dickinson/Povh ’12], [B./Dür/Teo ’12].

A = P A = P ∩N (T, µ) = ([0,1]n, λn)

Immanuel
Schreibmaschinentext
PJC Dickinson 2012

Immanuel
Schreibmaschinentext

Immanuel
Schreibmaschinentext

Immanuel
Schreibmaschinentext

Immanuel
Schreibmaschinentext

Immanuel
Schreibmaschinentext



Selected references in chronological order

[Motzkin/Straus ’65] Maxima for graphs and a new proof of a theorem of
Turán. Canadian J. Math. 17, 533–540.

[Baumert ’66/’67] Extreme copositive quadratic forms I, II.
Pacific J. Math. 18, 197–204 and 20, 1–20.

[B. ’87] Remarks on the recursive structure of copositivity,
J. Inf. & Optimiz. Sciences 8, 243–260.

[B. ’92] Copositivity conditions for global optimality in indefinite quadratic
programming problems, Czechosl. J. OR 1, 7–19.

[B./Danninger ’93] Using copositivity for global optimality criteria in concave
quadratic programming problems, Math. Programming 62, 575–580.

[Preisig ’96] Copositivity and the minimization of quadratic functions with
nonnegativity and quadratic equality constraints,
SIAM Journal of Control and Optimization 34, 1135–1150.



Selected references, continued

[B. ’00] Linear-time detection of copositivity for tridiagonal matrices and
extension to block-tridiagonality, SIAM J.Matrix Anal.Appl.21, 840–848.

[B./Dür/de Klerk/Quist/Roos/Terlaky ’00] On copositive programming
and standard quadratic optimization problems, J.o.G.O. 18, 301–320.

[Lasserre ’00] Global optimization with polynomials and
the problem of moments, SIAM Journal on Optimization 11, 796–817.

[Parrilo’00] Structured semidefinite programs and semi-algebraic geometry
methods in robustness and optimization, Ph.D. thesis, CalTech.

[de Klerk/Pasechnik ’02] Approximation of the stability number of a graph
via copositive programming, SIAM Journal on Optimization 12, 875–892.

[B./de Klerk ’02] Solving standard quadratic optimization problems via
linear, semidefinite and copositive programming, J.o.G.O. 24, 163–185.

[Parrilo ’03] Semidefinite programming relaxations for semi-algebraic pro-
blems. Mathematical Programming 696B, 293–320.



Selected references, continued

[Camlıbel/Schumacher ’04], Copositive Lyapunov functions, in: Blondel/Megretski
(eds.), Unsolved problems in mathematical etc., Princeton UP 189–193.

[Peña/Vera/Zuluaga ’07] Computing the stability number of a graph via
linear and semidefinite etc., SIAM Journal on Optimization 18, 87–105.

[Povh/Rendl ’07] A copositive programming approach to graph partitioning,
SIAM Journal on Optimization 18, 223–241.

[Dür/Still ’08] Interior points of the completely positive cone,
Electronic J. Linear Algebra 17, 48–53.

[Bundfuss/Dür ’08] Algorithmic copositivity detection by simplicial partition,
Linear Algebra and its Applications 428, 1511–1523.

[Burer ’09] On the copositive representation of binary and continuous non-
convex quadratic programs, Math. Programming 120, 479–495.



Selected references, continued

[Bundfuss/Dür ’09a] Copositive Lyapunov functions for switched systems
over cones, Systems & Control Letters 58, 342–345.

[Bundfuss/Dür ’09b] An adaptive linear approximation algorithm for copo-
sitive programs, SIAM Journal on Optimization 20, 30–53.

[Locatelli/Schoen ’10] On convex envelopes and underestimators for biva-
riate functions, preprint, www.optimization-online.org

[Dickinson ’10] An improved characterisation of the interior of the completely
positive cone, Electron. J. Linear Algebra 20, 723–729.

[Dong ’10] Symmetric tensor approximation hierarchies for the completely
positive cone, SIAM Journal on Optimization, to appear.

[Lasserre ’11] A new look at nonnegativity on closed sets and polynomial
optimization, SIAM Journal on Optimization 21, 864–885.

[Natarajan/Teo/Zheng ’11] Mixed zero-one linear programs under objective
uncertainty: a c.p. representation, Operations Research 59, 713–728.



Selected references, continued

[Hildebrand ’12] The extremal rays of the 5× 5 copositive cone,
Linear Algebra Appl. 437, 1538–1547.

[Sponsel/Bundfuss/Dür ’12] An improved algorithm to test copositivity,
Journal of Global Optimization 52, 537–551.

[B./Eichfelder ’12] Copositivity detection by difference-of-convex decompo-
sition and ω-subdivision, Math. Programming 138, 365–400.
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