
Mean-Field Games

First lecture: Formulation, Solvability

François Delarue (Nice – J.-A. Dieudonné)

PGMO, March 7-8 2022

Based on joint works with R. Carmona, P. Cardaliaguet, A. Cecchin,
D. Crisan, J.F. Chassagneux, R. Foguen, D. Lacker, J.M. Lasry, P.L.

Lions, K. Ramaman



Part I. Motivation



Part I. Motivation

a. General philosophy



Basic purpose
• Interacting particles / players

◦ controlled players in mean-field interaction

◦ particles have dynamical states! stochastic diff. equation

◦ mean-field!
symmetric interaction with whole population
no privileged interaction based on the labels

• Associate cost functional with each player

◦ find equilibria w.r.t. cost functionals

◦ shape of the equilibria for a large population?

• Different notions of equilibria

◦ players decide on their own find a compromise inside the
population⇒ notion of Nash equilibrium

◦ players obey a common center of decision minimize the
global cost to the collectivity⇒ notion of Social optimizer

• Both cases{ asymptotic equilibria as the number of players ↑ ∞?
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Typical examples...



Asymptotic formulation
• Paradigm

◦ mean-field / symmetry! propagation of chaos / LLN

◦ reduce the asymptotic analysis to one typical player with
interaction with a theoretical distribution of the population?

◦ decrease the complexity to solve asymptotic formulation first

• Program

◦ Existence of asymptotic equilibria ? Uniqueness? Shape?

◦ Use asymptotic equilibria as quasi-equilibria in finite-game

◦ Prove convergence of equilibria in finite-player-systems

• Asymptotic formulation of Nash equilibria Mean-field games!
[Lasry-Lions (06), Huang-Caines-Malhamé (06), Bertucci,
Cardaliaguet, Achdou, Gangbo, Gomes, Porreta (PDE), Bensoussan,
Carmona, Cecchin, D., Djete, Lacker (Probability)]

• Common center of decision 
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Carmona, Cecchin, D., Djete, Lacker (Probability)]

• Common center of decision optimal control of McKean-Vlasov
SDEs or Fokker-Planck PDEs Mean-field control!



Part I. Motivation

b. Nash equilibria within a finite system



General formulation
• Controlled system of N interacting particles with mean-field
interaction through the global state of the population

◦ dynamics of particle number i ∈ {1, . . . ,N}

dXi
t︸︷︷︸

∈ Rd

= b
(
Xi

t , global state of the collectivity, αi
t
)
dt

+ σ
(
Xi

t , global state
)

dW i
t︸︷︷︸

idiosyncratic noises

+ σ0(Xi
t , global state

)
dBt︸︷︷︸

common/systemic noise

• Rough description of the probabilistic set-up

◦ (Bt,W1
t , . . . ,W

N
t )0≤t≤T independent B.M. with values in Rd

◦ (αi
t)0≤t≤T progressively-measurable processes with values in A

(closed convex ⊂ Rk)

◦ i.i.d. initial conditions ⊥⊥ noises
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Empirical measure
• Code the state of the population at time t through µ̄N

t = 1
N

∑N
i=1 δXi

t

 probability measure on Rd

◦ P2(Rd){ set of probabilities on Rd with finite 2nd moments

• Express the coefficients as
b : Rd × P2(Rd) × A→ Rd,

σ, σ0 : Rd × P2(Rd)→ Rd×d,

◦ examples: b(x, µ, α) = b
(
x,

∫
Rd ϕdµ, α

)
,

∫
Rd b(x, v, α)dµ(v)

◦ rewrite the dynamics of the particles

dXi
t = b

(
Xi

t , µ̄
N
t , α

i
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t + σ0(Xi
t , µ̄

N
t
)
dBt

• Cost functional to player i ∈ {1, . . . ,N}
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Ji(α1,α2, . . . ,αN)
= E

[
g
(
Xi

T , µ̄
N
T
)

+

∫ T

0
f
(
Xi

t , µ̄
N
t , α

i
t
)
dt

]
◦ same (f , g) for all i but Ji depends on the others through µ̄N
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N
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)
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t + σ0(Xi
t , µ̄

N
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)
dBt

• Cost functional to player i ∈ {1, . . . ,N} (an example)

Ji = E
[ 1
N

N∑
j=1

g
(
Xi

T − Xj
T ) +

∫ T

0

( 1
N

N∑
j=1

f
(
Xi

t − Xj
t
)

+ |αi
t|

2
)
dt

]
◦ cost reads potential energy plus kinetic energy



Nash equilibrium
• Each player is willing to minimize its own cost functional

◦ need for a compromise { Nash equilibrium

• Say that a N-tuple of strategies (α1,?, . . . ,αN,?) is a compromise if

◦ no interest for any player to leave the compromise

◦ change αi,? { αi ⇒ Ji ↗

Ji(α1,?, . . . ,αi,?, . . . ,αN,?) ≤ Ji(α1,?, . . . ,αi, . . .αN,?)
•Meaning of freezing α1,?, . . . ,αi−1,?,αi+1,?,αN,?

◦ freezing the processes{ Nash equilibrium in open loop

◦ αi
t = αi(t,X1

t , . . . ,X
N
t ){ each function αi is a Markov feedback

{ Nash over of Markov loop
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{ Nash over of Markov loop

◦ leads to different equilibria! but expect that there is no
difference in the asymptotic setting



Nash equilibrium
• Each player is willing to minimize its own cost functional

◦ need for a compromise { Nash equilibrium

• Say that a N-tuple of strategies (α1,?, . . . ,αN,?) is a compromise if

◦ no interest for any player to leave the compromise

◦ change αi,? { αi ⇒ Ji ↗

Ji(α1,?, . . . ,αi,?, . . . ,αN,?) ≤ Ji(α1,?, . . . ,αi, . . .αN,?)
•Meaning of freezing α1,?, . . . ,αi−1,?,αi+1,?,αN,?

◦ freezing the processes{ Nash equilibrium in open loop

◦ αi
t = αi(t,X1

t , . . . ,X
N
t ){ each function αi is a Markov feedback

{ Nash over of Markov loop

• Central planner { everybody uses same feedback! and minimize
the common cost!



Part I. Motivation

c. Example



Exhaustible resources [Guéant Lasry Lions]

• N producers of oil{ Xi
t (estimated reserve) at time t

dXi
t = −αi

tdt + σXi
tdW i

t

◦ αi
t { instantaneous production rate

◦ σ common volatility for the perception of the reserve

◦ should be a constraint Xi
t ≥ 0

• Optimize the profit of a producer

Ji(α1, . . . ,αN) = E

∫ ∞

0
exp(−rt)

(
αi

tPt − c(αi
t)
)
dt

◦ Pt is selling price, c cost production

◦ mean-field constraint{ selling price is a function of the
mean-production

Pt = P
( 1
N

N∑
i=1

αi
t
)

◦ slightly different! interaction through the law of the control
{ extended MFG [Gomes al., Carmona D., Cardaliaguet Lehalle]
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Part I. Motivation

d. Central planner



Optimization problem over the whole population
• Same dynamics as before! rewrite the dynamics of the particles

dXi
t = b

(
Xi

t , µ̄
N
t , α

i
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t + σ0(Xi
t , µ̄

N
t
)
dBt

• Same cost functional! to player i ∈ {1, . . . ,N}

Ji(α1,α2, . . . ,αN)
= E

[
g
(
Xi

T , µ̄
N
T
)

+

∫ T

0
f
(
Xi

t , µ̄
N
t , α

i
t
)
dt

]
• Reduce to Markov feedback policies αi

t = αi(t,X1
t , . . . ,X

N
t )

• Central planner! ⇒ Forces all the players to use the same αi = α!

◦ exchangeability (symmetry in law)⇒ J1 = · · · = JN is the cost
to the society

◦ minimize any Ji with respect to α!



Part II. From propagation of chaos to MFG



Part II. From propagation of chaos to MFG

a. McKean-Vlasov SDEs

NO COMMON NOISE



General uncontrolled particle system
• Remove the control and the common noise!

dXi
t = b

(
Xi

t , µ̄
N
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t

◦ X1
0 , . . . ,X

i
N i.i.d. (and ⊥⊥ of noises), µ̄N

t =
1
N

N∑
i=1

δXi
t

• ∃! if the coefficients are Lipschitz in all the variables need a
suitable distance on space of measures

• Use the Wasserstein distance on P2(Rd)

µ, ν ∈ P2(Rd), W2(µ, ν) =

(
inf
π

∫
Rd×Rd

|x − y|2dπ(x, y)
)1/2

,

where π has µ and ν as marginals on Rd × Rd ( )

◦ X and X′ two r.v.’s⇒ W2(L(X),L(X′)) ≤ E[|X − X′|2]1/2

• Example W2
( 1
N

N∑
i=1

δxi ,
1
N

N∑
i=1

δx′i

)
≤

( 1
N

N∑
i=1

|xi − x′i |
2
)1/2

( )
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McKean-Vlasov SDE
• Expect some decorrelation / averaging in the system as N ↑ ∞ ( )

◦ replace the empirical measure by the theoretical law

dXt = b
(
Xt,L(Xt)

)
dt + σ

(
Xt,L(Xt)

)
dWt

• Cauchy-Lipschitz theory

◦ assume b and σ Lipschitz continuous on Rd × P2(Rd)⇒ unique
solution for any given initial condition in L2

◦ proof works as in the standard case taking advantage of

E
[∣∣∣(b, σ)

(
Xt,L(Xt)

)
− (b, σ)

(
X′t ,L(X′t )

)∣∣∣2] ≤ CE
[
|Xt − X′t |

2]

• Propagation of chaos

◦ each (Xi
t)0≤t≤T converges in law to the solution of MKV SDE

◦ particles get independent in the limit{ for k fixed:

(X1
t , . . . ,X

k
t )0≤t≤T −→

L
L(MKV)⊗k = L

(
(Xt)0≤t≤T

)⊗k as N ↗ ∞

◦ lim
N↗∞

sup
0≤t≤T

E
[(

W2(µ̄N
t ,L(Xt)

)2]
= 0
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Part II. From propagation of chaos to MFG

b. Formulation of the asymptotic problems



Ansatz
• Go back to the finite game

• Ansatz{ at equilibrium

αi,?
t = αN(

t,Xi
t , µ̄

N
t
)
≈ α

(
t,Xi

t , µ̄
N
t
)

◦ particle system at equilibrium

dXi
t ≈ b

(
Xi

t , µ̄
N
t , α(t,Xi

t , µ̄
N
t )

)
dt + σ

(
Xi

t , α(t,Xi
t , µ̄

N
t )

)
dW i

t

◦ particles should decorrelate as N ↗ ∞

◦ µ̄N
t should stabilize around some deterministic limit µt

•What about an intrinsic interpretation of µt ?

◦ should describe the global state of the population in equilibrium

◦ in the limit setting, any particle that leaves the equilibrium
should not modify µt { leaving the equilibrium means that the cost
increases{ any particle in the limit should solve an optimal control
problem in the environment (µt)0≤t≤T
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Matching problem of MFG
• Define the asymptotic equilibrium state of the population as the
solution of a fixed point problem

(1) fix a flow of probability measures (µt)0≤t≤T (with values in
P2(Rd))

(2) solve the stochastic optimal control problem in the environment
(µt)0≤t≤T

dXt = b(Xt, µt, αt)dt + σ(Xt, µt)dWt

◦ with X0 = ξ being fixed on some set-up (Ω,F,P) with a
d-dimensional B.M.

◦ with cost J(α) = E
[
g(XT , µT ) +

∫ T
0 f (Xt, µt, αt)dt

]
(3) let (X?,µ

t )0≤t≤T be the unique optimizer (under nice assumptions)
{ find (µt)0≤t≤T such that

µt = L
(
X?,µ

t
)
, t ∈ [0,T]

• Not a proof of convergence!
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• Not a proof of convergence!



Part II. From propagation of chaos to MFG

c. Forward-backward systems



PDE point of view: HJB
• PDE characterization of the optimal control problem when σ is
the identity

• Value function in environment (µt)0≤t≤T

u(t, x) = inf
α processes

E
[
g(XT , µT ) +

∫ T

t
f (Xs, µs, αs)ds|Xt = x

]

• u solution Backward HJB ( )(
∂tu +

∆xu
2

)
(t, x) + inf

α deterministic

[
b
(
x, µt, α

)
∂xu(t, x) + f

(
x, µt, α

)]︸                                                   ︷︷                                                   ︸
standard Hamiltonian in HJB

= 0

• H(x, µ, α, z) = b(x, µ, α) · z + f (x, µ, α) ( )

◦ α?(x, µ, z) = argminα∈AH(x, µ, α, z){ α? = α?(x, µt, ∂xu(t, x))

• Terminal boundary condition: u(T , ·) = g(·, µT )

• Pay attention that u depends on (µt)t!
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Fokker-Planck
• Need for a PDE characterization of (L(X?,µ

t ))t

• Dynamics of X?,µ at equilibrium

dX?,µ
t = b

(
X?,µ

t , µt, α
?(X?,µ

t , µt, ∂xuµ(t,X?,µ
t ))

)
dt + dWt

• Law (X?,µ
t )0≤t≤T satisfies Fokker-Planck (FP) equation ( )

∂tµt = −divx
(
b(x, µt, α

?(x, µt, ∂xuµ(t, x))︸                            ︷︷                            ︸
b?(t, x)

µt
)

+
1
2

∆xµt

•MFG equilibrium described by forward-backward in∞ dimension

Fokker-Planck (forward)
HJB (backward)

◦ ∞ dimensional analogue of

ẋt = b(xt, yt)dt, x0 = x0

ẏt = −f (xt, yt)dt, yT = g(xT )
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Part II. From propagation of chaos to MFG

d. FBSDE formulation



Optimal control and FBSDEs
• Environment (µt)0≤t≤T is fixed and cost functional of the type

J(α) = E
[
g(XT , µT ) +

∫ T

0
f (Xt, µt, αt)dt

]
◦ assume f and g continuous and at most of quadratic growth

• Interpret optimal paths as the forward component of an FBSDE 
On (Ω,F,P) with F generated by (ξ, (Wt)0≤t≤T )

Xt = ξ +

∫ t

0
b
(
Xs, µs,Ys,Zs

)
ds +

∫ t

0
σ(Xs, µs)dWs

Yt = G(XT , µT ) +

∫ T

t
F

(
Xs, µs,Ys,Zs

)
ds −

∫ T

t
ZsdWs

◦ σ invertible, H strict convex in α and coeff. bounded in x⇒
((G,F) = (g, f ))⇒ represent value function!

◦ H strict convex in (x, α)⇒ Pontryagin! ((G,F) = (∂xg, ∂xH)) (σ
indep. of x)⇒ represent gradient value function!

◦ choose (µt)0≤t≤T as the law of optimal path! ⇒ characterize by
FBSDE of McKean-Vlasov type
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MKV FBSDE for the value function
• Consider, on (Ω,F,P), the MKV FBSDE

Xt = ξ +

∫ t

0
b
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds

+

∫ t

0
σ
(
Xs,L(Xs)

)
dWs

Yt = g
(
XT ,L(XT )

)
+

∫ T

t
f
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds −
∫ T

t
ZsdWs

• Connection with PDE formulation

Ys = u(s,Xs), Zs = ∂xu(s,Xs)σ(Xs, µs)

• Unique minimizer for each (µt)0≤t≤T if

◦ b, f , g, σ, σ−1 bounded in (x, µ), Lipschitz in x

◦ b linear in α and f strictly convex and loc. Lip in α, with Lip(f )
at most of linear growth in α



MKV FBSDE for the value function
• Consider, on (Ω,F,P), the MKV FBSDE

Xt = ξ +

∫ t

0
b
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds

+

∫ t

0
σ
(
Xs,L(Xs)

)
dWs

Yt = g
(
XT ,L(XT )

)
+

∫ T

t
f
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds −
∫ T

t
ZsdWs

• Connection with PDE formulation

Ys = u(s,Xs), Zs = ∂xu(s,Xs)σ(Xs, µs)

• Unique minimizer for each (µt)0≤t≤T if

◦ b, f , g, σ, σ−1 bounded in (x, µ), Lipschitz in x

◦ b linear in α and f strictly convex and loc. Lip in α, with Lip(f )
at most of linear growth in α



MKV FBSDE for the value function
• Consider, on (Ω,F,P), the MKV FBSDE

Xt = ξ +

∫ t

0
b
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds

+

∫ t

0
σ
(
Xs,L(Xs)

)
dWs

Yt = g
(
XT ,L(XT )

)
+

∫ T

t
f
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds −
∫ T

t
ZsdWs

• Connection with PDE formulation

Ys = u(s,Xs), Zs = ∂xu(s,Xs)σ(Xs, µs)

• Unique minimizer for each (µt)0≤t≤T if

◦ b, f , g, σ, σ−1 bounded in (x, µ), Lipschitz in x

◦ b linear in α and f strictly convex and loc. Lip in α, with Lip(f )
at most of linear growth in α



MKV FBSDE for the Pontryagin principle
• Consider, on (Ω,F,P), the MKV FBSDE
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(
Xs,L(Xs), α?

(
Xs,L(Xs),Ys

)
,Ys

)
ds −

∫ T

t
ZsdWs

• Connection with PDE formulation

Ys = ∂xu(s,Xs), Zs = ∂2
xu(s,Xs)σ(µs)

• Unique minimizer for each (µt)0≤t≤T if

◦ σ indep. of x and b(x, µ, α) = b0(µ) + b1x + b2α

◦ ∂xf , ∂αf , ∂xg L-Lipschitz in (x, α)

◦ g and f convex in (x, α) with f strict convex in α
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Part III. Solving MFG

a. Picture



Seeking a solution
• Any way{ two-point-boundary-problem⇒

◦ Cauchy-Lipschitz theory in small time only

◦ if Lipschitz coefficients (including the direction of the measure)
{ existence and uniqueness in short time (see later on)

{ existence and uniqueness of MFG equilibria in small time

• What about arbitrary time?

◦ existence{ fixed point over the measure argument by means of
compactness arguments

Schauder’s theorem

◦ uniqueness{ require additional assumption
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Part III. Solving MFG

b. Schauder fixed point theorem without common
noise



Statement of the Schauder fixed point theorem
• Generalisation of Brouwer’s theorem from finite to infinite
dimension

• Let (V , ‖ · ‖) be a normed vector space

◦ ∅ , E ⊂ V with E closed and convex

◦ φ : E → E continuous such that φ(E) is relatively compact

◦ ⇒ existence of a fixed point to φ

• In MFG{ what is V , what is E, what is φ?

◦ recall that MFG equilibrium is a flow of measures (µt)0≤t≤T

E ⊂ C
(
[0,T],P2(Rd)

)
◦ need to embed into a linear structure

C
(
[0,T],P2(Rd)

)
⊂ C

(
[0,T],M1(Rd)

)
◦ M1(Rd) set of signed measures ν with

∫
Rd |x|d|ν|(x) < ∞
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Compactness on the space of probability measures

• EquipM1(Rd) with a norm ‖ · ‖ ( ) and restrict to P1(Rd) such that

◦ convergence of (νn)n≥1 in P1(Rd) implies weak convergence

∀h ∈ Cb(Rd,R), lim
n→∞

∫
Rd

hdνn =

∫
Rd

hdν

◦ if (νn)n≥1 has uniformly bounded moments of order p > 2

Unif. square integrability⇒ W2(νn, ν)→ 0

◦ says that the input in the coefficients varies continuously!

b(x, νn, α), f (x, νn, α), g(x, νn)

• Compactness if (νn)n≥1 has bounded moments of order p > 2

◦ (νn)n≥1 admits a weakly convergent subsequence

◦ then convergence for W2 by unif. integrability and for ‖ · ‖ also
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Application to MKV FBSDE

• Choose E as continuous (µt)0≤t≤T from [0,T] to P2(Rd)

sup
0≤t≤T

∫
Rd
|x|4dµt(x) ≤ K for some K

• Construct φ{ fix (µt)0≤t≤T in E and solve HJB ◦ let

φ
(
µ = (µt)0≤t≤T

)
= (L(Xµt ))0≤t≤T

• Assume bounded coefficients and E[|X0|
4] < ∞

◦ choose K such that E[|Xµt |
4] ≤ K

⇒ E stable by φ

◦ W2(L(X?,µ
t ),L(X?,µ

s )) ≤ CE
[
|X?,µ

t − X?,µ
s |

2]1/2
≤ C|t − s|1/2
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• Choose E as continuous (µt)0≤t≤T from [0,T] to P2(Rd)

sup
0≤t≤T

∫
Rd
|x|4dµt(x) ≤ K for some K

• Construct φ{ fix (µt)0≤t≤T in E and solve HJB ◦ optimal
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Conclusion

• Consider continuous µ = (µt)0≤t≤T from [0,T] to P2(Rd)

◦ for any t{ (φ(µ))t in a compact subset of P2(Rd)

◦ [0,T] 3 t 7→ (φ(µ))t is uniformly continuous in µ

◦ by Arzelà-Ascoli⇒ output lives in a compact subset of
E ⊂ C([0,T],P2(Rd)) (and thus of C([0,T],M1(Rd))

• Continuity of φ on E{ stability of the solution of non-degenerate
HJB with respect to a continuous perturbation of the environment

• Refinements to allow for unbounded coefficients

◦ example{ b linear in α, f strictly convex in α, with derivatives
in α at most of linear growth in α

◦ other refinements to treat other types of growth

{ typical instance is linear-quadratic mean field games⇒
HJB has a quadratic solution that may be found (almost) explicitly
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Part III. Solving MFG

c. Uniqueness criterion



Need for monotonicity

• Simple 1d forward backward system

ẋt = −yt

ẏt = 0
yT = g(xT )

◦ finite-dimensional master PDE{
inviscid yt = v(t, xt)
Burgers equation

−∂tv = −v∂xv, v(T , x) = g

◦ well-posed if g↗⇒ ! of characteristics

◦ if not⇒ shocks may emerge in finite time ⇒ may loose !

• Plots of the characteristics
if g(x) = (−1 ∨ x ∧ 1)

0
0

T = 1

0

T = 1
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Lasry Lions monotonicity condition
• Recall following FBSDE result

◦ what is monotonicity condition in the direction of the measure?

• Lasry Lions monotonicity condition

◦ b, σ do not depend on µ

◦ f (x, µ, α) = f0(x, µ) + f1(x, α) (µ and α are separated)

◦ monotonicity property for f0 and g w.r.t. µ∫
Rd

(
f0(x, µ) − f0(x, µ′)

)
d
(
µ − µ′

)
(x) ≥ 0∫

Rd

(
g(x, µ) − g(x, µ′)

)
d
(
µ − µ′

)
(x) ≥ 0

• Example :

h(x, µ) =

∫
Rd

L
(
z, ρ ? µ(z)

)
ρ(x − z)dz

◦ where L is↗ in second variable and ρ is even
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Monotonicity restores uniqueness
• Assume that for any input µ = (µt)0≤t≤T unique optimal control α?,µ

◦ + existence of an MFG for a given initial condition

• Lasry Lions⇒ uniqueness of MFG equilibrium!

◦ if two different equilibria µ and µ′{ α?,µ , α?,µ
′

Jµ
(
α?,µ

)︸   ︷︷   ︸
cost under µ

< Jµ
(
α?,µ

′)
and Jµ

′(
α?,µ

′)︸     ︷︷     ︸
cost under µ′

< Jµ
′(
α?,µ

)

so that
Jµ
′(
α?,µ

)
− Jµ

′(
α?,µ

′)
+ Jµ

(
α?,µ

′)
− Jµ

(
α?,µ

)
> 0

Jµ
′(
α?,µ

)
− Jµ

(
α?,µ

)
−

[
Jµ
′(
α?,µ

′)
− Jµ

(
α?,µ

′)]
> 0

E
[

g(X?,µ
T , µ′T ) − g(X?,µ

T , µT )︸                          ︷︷                          ︸∫
Rd

(
g(x, µ′T ) − g(x, µT )

)
dµT (x)

−
(
g(X?,µ′

T , µ′T ) − g(X?,µ′

T , µT )
)︸                              ︷︷                              ︸∫

Rd

(
g(x, µ′T ) − g(x, µT )

)
dµ′T (x)

+. . .
]
> 0

◦ same for f0 ⇒ LHS must be ≤ 0
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� Recall the form of an Ordinary DE (with values in Rd)

Ẋt = b(t,Xt), or dXt = b(t,Xt)dt,

for a velocity field b with values in Rd, called drift

� call Stochastic DE

dXt = b(t,Xt)dt + σ(t,Xt)dWt,

for a volatility σ with values in Rd×d, and where

 dWt = (dW1
t , · · · , dWd

t )

 dW1
t , · · · , dWd

t are ⊥⊥ and N(0, dt)

 dWt is independent of the past before t



� (Wt)t≥0 B.M. with values in Rd is

Wt =
(
W1

t , · · · ,W
d
t
)

 (W1
t )t≥0, · · · , (Wd

t )t≥0 independent

 W i
t+dt −W i

t of the past before t and N(0, dt) distributed

 plot in d = 2



� Recall Law of Large Numbers

 take sequence (Xn)n≥1 of independent r.v. with values in Rd

 take ϕ : Rd → R bounded continuous

P
(

lim
N→∞

1
N

N∑
n=1

ϕ(Xn) = E
[
ϕ(X1)

])
= 1

� Define the empirical measure µ̄N = 1
N

∑N
k=1 δXk and call µ = L(X1)

P
(

lim
N→∞

∫
Rd
ϕdµ̄N =

∫
Rd
ϕdµ

)
= 1

 take ϕ in countable subset of C0(Rd), set of bounded
continuous functions that tend to 0 at infinity,

P
(
∀ϕ ∈ C0(Rd), lim

N→∞

∫
Rd
ϕdµ̄N =

∫
Rd
ϕdµ

)
= 1

and then P
(
µN ⇒ µ

)
= 1!



� u (classical) solution(
∂tu +

∆xu
2

)
(t, x) + inf

β ∈A

[
b
(
x, µt, β

)
∂xu(t, x) + f

(
x, µt, β

)]
= 0

 H(x, µ, α, z) = b(x, µ, α) · z + f (x, µ, α)

 α?(x, µ, z) = argminα∈AH(x, µ, α, z){ α? = α?(x, µt, ∂xu(t, x))

� (Exercise) take dXt = b(Xt, µt, αt)dt + dWt

 Apply Itô’ s formula to prove that

d
(
u(t,Xt) +

∫ t

0
f (Xs, µs, αs)ds

)
≥

[
H

(
Xt, µt, αt, ∂xu(t,Xt)

)
− inf

β
H

(
Xt, µt, β, ∂xu(t,Xt)

)]
dt + dmt

with (mt)0≤t≤T zero expectation

 take expectation and
∫ T

0 . . . dt and get J(α) ≥ E[u(0,X0)]

optimal feedback is α?(x, µt, ∂xu(t, x))



� Recall H(x, µ, α, z) = b(x, µ, α) · z + f (x, µ, α)

 take b(x, µ, α) = α

 take f (x, µ, α) = f (x, µ) + 1
2 |α|

2

 take A = Rd

� Then, α?(x, µ, z) = −z

 HJB becomes(
∂tu + 1

2∆xu
)
(t, x) − 1

2 |∂xu(t, x)|2 + f
(
x, µt

)
= 0



� Take
dXt = b

(
t,Xt

)
dt + dWt

 find an equation for (µt = L(Xt))0≤t≤T?

� Fokker-Planck

∂tµt = −divx
(
b(t, x)µt

)
+

1
2

∆xµt

 take ϕ smooth test function (with compact support) and expand

E
[
ϕ(Xt)

]
=

∫
Rd
ϕ(x)dµt(x)

 Itô’s formula yields

d
dt
E
[
ϕ(Xt)

]
= E

[
b(t,Xt) · ∂xϕ(Xt) +

1
2

∆xϕ(Xt)
]

that is

d
dt

∫
Rd
ϕ(x)dµt(x) =

∫
Rd

b(t, x) · ∂xϕ(x)dµt(x) +
1
2

∫
Rd

∆xϕ(x)dµt(x)



� Take
dXt = b

(
t,Xt

)
dt + dWt

 find an equation for (µt = L(Xt))0≤t≤T?

� Fokker-Planck

∂tµt = −divx
(
b(t, x)µt

)
+

1
2

∆xµt

 take ϕ smooth test function (with compact support) and expand

E
[
ϕ(Xt)

]
=

∫
Rd
ϕ(x)dµt(x)

 Itô’s formula yields

d
dt
E
[
ϕ(Xt)

]
= E

[
b(t,Xt) · ∂xϕ(Xt) +

1
2

∆xϕ(Xt)
]

that is
d
dt

〈
ϕ, µt

〉
=

〈
ϕ,−divx

(
b(t, ·)µt +

1
2

∆xµt
〉



� Take θ random variable with uniform distribution on {1, · · · ,N}
and, for x, x′ in (Rd)N , consider

X = θx, X′ = θx′

 L(X) =
1
N

N∑
i=1

δxi , L(X′) =
1
N

N∑
i=1

δx′i



� Backward SDE

Yt = G(XT ) +

∫ T

t
F
(
Xs,Ys,Zs

)
ds −

∫ T

t
ZsdWs

 strange to have two unknowns and one equation!

� make it clear with F ≡ 0

 always want Yt not to anticipate on the future

 cannot be Yt = G(XT )

 only way is Yt = E[G(XT ) | Ft]

 Theorem from probability that there exists a unique Z!



� Choose ‖ · ‖ as Kantorovich Rubinstein norm (see Bogachev)

‖µ‖ = |µ(Rd)| + sup
{∫
Rd
`(x)dµ(x), ` 1-Lip, `(0) = 0

}

� Then Kantorovich formula forW1

W1(µ, µ′) = ‖µ − µ′‖



� If p ≥ 1 and Pp(Rd) probability measures with finite p-moments

µ, ν ∈ Pp(Rd), Wp(µ, ν) =

(
inf
π

∫
Rd×Rd

|x − y|pdπ(x, y)
)1/p

,

where π has µ and ν as marginals on Rd × Rd



� First order condition of optimality with noise

dXt = b(Xt, µt, αt)dt + σdWt

 Pontryagin system (Peng)

Xt = X0 +

∫ t

0
b
(
Xs, µs, α

?(Xs, µs,Ys
))

ds

+ σWt

Yt = ∂xg(XT , µT ) +

∫ T

t
∂xH

(
Xs, µs, α

?(Xs, µs,Ys
)
,Ys

)
ds

−

∫ T

t
ZsdWs
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� First order condition of optimality with noise

dXt = b(Xt, µt, αt)dt + σdWt

 Pontryagin system (Peng)

Xt = X0 +

∫ t

0
b
(
Xs,L(Xs), α?

(
Xs,L(Xs),Ys

))
ds

+ σWt

Yt = ∂xg(XT ,L(XT )) +

∫ T

t
∂xH

(
Xs,L(Xs), α?

(
Xs,L(Xs),Ys

)
,Ys

)
ds

−

∫ T

t
ZsdWs



� Summary: Forward-Backward systems may be ill-posed! But:

 Noise restores uniqueness!

 Monotonicity (↔ convexity)restoresuniqueness!



� Hint: Either use monotonicity or interpret the FB system as the
Pontryagin system of a standard optimal control problem with
linear–convex coefficients

 b(t, x, α) = (atx + a′t)x + btαt

 g(x) = 1
2 q(q + q′)x2

 f (t, x, α) = 1
2
[
α2 + mt(mt + m′t)x

2]



� Exercise : What does monotonicity for the MFG mean for the
control problem?

� Hint : Write monotonicity as∫
Rd

[∫
Rd

F(x − y)dm(y) −
∫
Rd

F(x − y)dm′(y)
]
d
(
m − m′)(x) ≥ 0

⇔

∫
Rd

∫
Rd

F(x − y)d
(
m − m′

)
(y)d

(
m − m′)(x) ≥ 0

 second-order term is positive in linearization⇔ convexity!

� Examples :

 F(z) = −|z|2

 F(z) =

∫
Rd

exp(iz · s)dλ(s), where λ is symmetric positive

finite measure
(take λ a Gaussian, take λ a Cauchy, take λ a combination of

two Dirac masses...)



�Make a convex perturbation of µ ∈ P(Rd)

 take ν ∈ P(Rd) and expand

1
2

∫
Rd

∫
Rd

F(x − y)d
(
(1 − ε)µ(x) + εν(x)

)
d
(
(1 − ε)µ(x) + εν(x)

)
= 1

2

∫
Rd

∫
Rd

F(x − y)dµ(x)dµ(y)

+ ε

∫
Rd

∫
Rd

F(x − y)dµ(x)d(ν − µ)(y)

+ ε2 1
2

∫
Rd

∫
Rd

F(x − y)d(ν − µ)(x)d(ν − µ)(y)

 regard ν − µ as direction of linearization
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