Mean-Field Games

First lecture: Formulation, Solvability

François Delarue (Nice – J.-A. Dieudonné)

PGMO, March 7-8 2022

Based on joint works with R. Carmona, P. Cardaliaguet, A. Cecchin, D. Crisan, J.F. Chassagneux, R. Foguen, D. Lacker, J.M. Lasry, P.L. Lions, K. Ramaman

Part I. Motivation

Part I. Motivation

a. General philosophy

Basic purpose

• Interacting particles / players

• controlled players in mean-field interaction

◦ particles have dynamical states ↔ stochastic diff. equation

• mean-field first symmetric interaction with whole population no privileged interaction based on the labels

• Associate cost functional with each player

• find equilibria w.r.t. cost functionals

• shape of the equilibria for a large population?

Basic purpose

• Interacting particles / players

• controlled players in mean-field interaction

◦ particles have dynamical states ↔ stochastic diff. equation

• mean-field \leftrightarrow symmetric interaction with whole population no privileged interaction based on the labels

• Associate cost functional with each player

• find equilibria w.r.t. cost functionals

• shape of the equilibria for a large population?

• Different notions of equilibria

 \circ players decide on their own \rightsquigarrow find a compromise inside the population \Rightarrow notion of Nash equilibrium

 \circ players obey a common center of decision \rightsquigarrow minimize the global cost to the collectivity \Rightarrow notion of Social optimizer

• Both cases \rightarrow asymptotic equilibria as the number of players $\uparrow \infty$?

Typical examples...

Asymptotic formulation

• Paradigm

◦ mean-field / symmetry ↔ propagation of chaos / LLN

• reduce the asymptotic analysis to one typical player with interaction with a theoretical distribution of the population?

 \circ decrease the complexity to solve asymptotic formulation first

Asymptotic formulation

• Paradigm

o mean-field / symmetry ↔
 propagation of chaos / LLN

• reduce the asymptotic analysis to one typical player with interaction with a theoretical distribution of the population?

 \circ decrease the complexity to solve asymptotic formulation first

• Program

• Existence of asymptotic equilibria ? Uniqueness? Shape?

- Use asymptotic equilibria as quasi-equilibria in finite-game
- Prove convergence of equilibria in finite-player-systems

Asymptotic formulation

• Paradigm

 \circ mean-field / symmetry $\leftrightarrow \rightarrow$ propagation of chaos / LLN

• reduce the asymptotic analysis to one typical player with interaction with a theoretical distribution of the population?

 \circ decrease the complexity to solve asymptotic formulation first

• Program

• Existence of asymptotic equilibria ? Uniqueness? Shape?

• Use asymptotic equilibria as quasi-equilibria in finite-game

• Prove convergence of equilibria in finite-player-systems

• Asymptotic formulation of Nash equilibria \rightsquigarrow Mean-field games! [Lasry-Lions (06), Huang-Caines-Malhamé (06), Bertucci, Cardaliaguet, Achdou, Gangbo, Gomes, Porreta (PDE), Bensoussan, Carmona, Cecchin, D., Djete, Lacker (Probability)]

• Common center of decision \rightsquigarrow optimal control of McKean-Vlasov SDEs or Fokker-Planck PDEs \rightsquigarrow Mean-field control!

Part I. Motivation

b. Nash equilibria within a finite system

General formulation

• Controlled system of N interacting particles with mean-field interaction through the global state of the population

• dynamics of particle number $i \in \{1, \ldots, N\}$

$$\underbrace{dX_t^i}_{\in \mathbb{R}^d} = b(X_t^i, \text{global state of the collectivity}, \alpha_t^i)dt$$

$$\in \mathbb{R}^d + \sigma(X_t^i, \text{global state}) \underbrace{dW_t^i}_{i\text{diosyncratic noises}} + \sigma^0(X_t^i, \text{global state}) \underbrace{dB_t}_{\text{common/systemic noise}}$$

General formulation

• Controlled system of N interacting particles with mean-field interaction through the global state of the population

• dynamics of particle number $i \in \{1, \ldots, N\}$

$$\underbrace{dX_t^i}_{\in \mathbb{R}^d} = b(X_t^i, \text{global state of the collectivity}, \alpha_t^i)dt$$

$$\stackrel{\in \mathbb{R}^d}{\quad + \sigma(X_t^i, \text{global state})} \underbrace{dW_t^i}_{i\text{diosyncratic noises}}$$

$$+ \sigma^0(X_t^i, \text{global state}) \underbrace{dB_t}_{common/systemic noises}$$

• Rough description of the probabilistic set-up

 $\circ (B_t, W_t^1, \dots, W_t^N)_{0 \le t \le T}$ independent B.M. with values in \mathbb{R}^d

◦ $(\alpha_t^i)_{0 \le t \le T}$ progressively-measurable processes with values in *A* (closed convex ⊂ \mathbb{R}^k)

∘ i.i.d. initial conditions ⊥ noises

• Code the state of the population at time *t* through $\overline{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$ \rightsquigarrow probability measure on \mathbb{R}^d

 $\circ \mathcal{P}_2(\mathbb{R}^d) \rightsquigarrow$ set of probabilities on \mathbb{R}^d with finite 2nd moments

• Code the state of the population at time *t* through $\bar{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$ \rightsquigarrow probability measure on \mathbb{R}^d

 $\circ \mathcal{P}_2(\mathbb{R}^d) \rightsquigarrow$ set of probabilities on \mathbb{R}^d with finite 2nd moments

• Express the coefficients as $\begin{array}{l} b: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times A \to \mathbb{R}^d, \\ \sigma, \sigma^0: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^{d \times d}, \end{array}$

• examples: $b(x, \mu, \alpha) = b(x, \int_{\mathbb{R}^d} \varphi d\mu, \alpha), \quad \int_{\mathbb{R}^d} b(x, \nu, \alpha) d\mu(\nu)$

o rewrite the dynamics of the particles

 $dX_t^i = b(X_t^i, \bar{\mu}_t^N, \alpha_t^i)dt + \sigma(X_t^i, \bar{\mu}_t^N)dW_t^i + \sigma^0(X_t^i, \bar{\mu}_t^N)dB_t$

• Code the state of the population at time *t* through $\bar{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$ \rightsquigarrow probability measure on \mathbb{R}^d

 $\circ \mathcal{P}_2(\mathbb{R}^d) \rightsquigarrow$ set of probabilities on \mathbb{R}^d with finite 2nd moments

• Express the coefficients as $b: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times A \to \mathbb{R}^d, \\ \sigma, \sigma^0: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^{d \times d},$

• examples: $b(x, \mu, \alpha) = b(x, \int_{\mathbb{R}^d} \varphi d\mu, \alpha), \quad \int_{\mathbb{R}^d} b(x, \nu, \alpha) d\mu(\nu)$

o rewrite the dynamics of the particles

 $dX_t^i = b(X_t^i, \bar{\mu}_t^N, \alpha_t^i)dt + \sigma(X_t^i, \bar{\mu}_t^N)dW_t^i + \sigma^0(X_t^i, \bar{\mu}_t^N)dB_t$

• **Cost functional** to player $i \in \{1, ..., N\}$

$$J^{i}(\alpha^{1}, \alpha^{2}, \dots, \alpha^{N}) = \mathbb{E}\left[g(X_{T}^{i}, \bar{\mu}_{T}^{N}) + \int_{0}^{T} f(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i})dt\right]$$

• same (f, g) for all *i* but J^i depends on the others through $\overline{\mu}^N$

• Code the state of the population at time *t* through $\bar{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$ \rightsquigarrow probability measure on \mathbb{R}^d

 $\circ \mathcal{P}_2(\mathbb{R}^d) \rightsquigarrow$ set of probabilities on \mathbb{R}^d with finite 2nd moments

• Express the coefficients as $b: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times A \to \mathbb{R}^d, \\ \sigma, \sigma^0: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^{d \times d},$

• examples: $b(x, \mu, \alpha) = b(x, \int_{\mathbb{R}^d} \varphi d\mu, \alpha), \quad \int_{\mathbb{R}^d} b(x, \nu, \alpha) d\mu(\nu)$

o rewrite the dynamics of the particles

$$dX_t^i = b(X_t^i, \bar{\mu}_t^N, \alpha_t^i)dt + \sigma(X_t^i, \bar{\mu}_t^N)dW_t^i + \sigma^0(X_t^i, \bar{\mu}_t^N)dB_t$$

• Cost functional to player $i \in \{1, ..., N\}$ (an example)

$$J^{i} = \mathbb{E}\bigg[\frac{1}{N}\sum_{j=1}^{N}g(X_{T}^{i} - X_{T}^{j}) + \int_{0}^{T} \Big(\frac{1}{N}\sum_{j=1}^{N}f(X_{t}^{i} - X_{t}^{j}) + |\alpha_{t}^{i}|^{2}\Big)dt\bigg]$$

cost reads potential energy plus kinetic energy

• Each player is willing to minimize its own cost functional

 \circ need for a compromise \sim Nash equilibrium

- Each player is willing to minimize its own cost functional
 o need for a compromise → Nash equilibrium
- Say that a *N*-tuple of strategies (α^{1,★},...,α^{N,★}) is a compromise if

 no interest for any player to leave the compromise
 change α^{i,★} → αⁱ ⇒ Jⁱ ↗

$$J^{i}(\alpha^{1,\star},\ldots,\alpha^{i,\star},\ldots,\alpha^{N,\star}) \leq J^{i}(\alpha^{1,\star},\ldots,\alpha^{i},\ldots,\alpha^{N,\star})$$

- Each player is willing to minimize its own cost functional
 need for a compromise ~ Nash equilibrium
- Say that a *N*-tuple of strategies (α^{1,★},..., α^{N,★}) is a compromise if

 no interest for any player to leave the compromise
 change α^{i,★} → αⁱ ⇒ Jⁱ ↗

$$J^{i}(\alpha^{1,\star},\ldots,\alpha^{i,\star},\ldots,\alpha^{N,\star}) \leq J^{i}(\alpha^{1,\star},\ldots,\alpha^{i},\ldots,\alpha^{N,\star})$$

• Meaning of freezing $\alpha^{1,\star}, \ldots, \alpha^{i-1,\star}, \alpha^{i+1,\star}, \alpha^{N,\star}$

 \circ freezing the processes \rightsquigarrow Nash equilibrium in open loop

 $\circ \alpha_t^i = \alpha^i(t, X_t^1, ..., X_t^N)$ → each function α^i is a Markov feedback → Nash over of Markov loop

• leads to different equilibria! but expect that there is no difference in the asymptotic setting

- Each player is willing to minimize its own cost functional
 need for a compromise ~ Nash equilibrium
- Say that a *N*-tuple of strategies (α^{1,*},..., α^{N,*}) is a compromise if

 no interest for any player to leave the compromise
 change α^{i,*} → αⁱ ⇒ Jⁱ ↗

$$J^{i}(\alpha^{1,\star},\ldots,\alpha^{i,\star},\ldots,\alpha^{N,\star}) \leq J^{i}(\alpha^{1,\star},\ldots,\alpha^{i},\ldots,\alpha^{N,\star})$$

• Meaning of freezing $\alpha^{1,\star}, \ldots, \alpha^{i-1,\star}, \alpha^{i+1,\star}, \alpha^{N,\star}$

◦ freezing the processes → Nash equilibrium in open loop

 $\circ \alpha_t^i = \alpha^i(t, X_t^1, ..., X_t^N)$ ⇔ each function α^i is a Markov feedback → Nash over of Markov loop

• Central planner ~> everybody uses same feedback! and minimize the common cost!

Part I. Motivation

c. Example

Exhaustible resources [Guéant Lasry Lions]

• N producers of oil $\rightsquigarrow X_t^i$ (estimated reserve) at time t

$$dX_t^i = -\frac{\alpha_t^i}{dt} dt + \sigma X_t^i dW_t^i$$

 $\circ \alpha_t^i \rightarrow$ instantaneous production rate

 $\circ\,\sigma$ common volatility for the perception of the reserve

• should be a constraint $X_t^i \ge 0$

Exhaustible resources [Guéant Lasry Lions]

• N producers of oil $\rightsquigarrow X_t^i$ (estimated reserve) at time t

$$dX_t^i = -\frac{\alpha_t^i}{dt} dt + \sigma X_t^i dW_t^i$$

 $\circ \alpha_t^i \rightsquigarrow$ instantaneous production rate

• σ common volatility for the perception of the reserve • should be a constraint $X_t^i \ge 0$

• Optimize the profit of a producer

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \mathbb{E}\int_{0}^{\infty} \exp(-rt)(\alpha_{t}^{i}P_{t}-c(\alpha_{t}^{i}))dt$$

 $\circ P_t$ is selling price, c cost production

 \circ mean-field constraint \rightsquigarrow selling price is a function of the mean-production

$$P_t = P(\frac{1}{N}\sum_{i=1}^N \alpha_t^i)$$

o slightly different! → interaction through the law of the control
 → extended MFG [Gomes al., Carmona D., Cardaliaguet Lehalle]

Part I. Motivation

d. Central planner

Optimization problem over the whole population

• Same dynamics as before! rewrite the dynamics of the particles

$$dX_t^i = b(X_t^i, \bar{\mu}_t^N, \alpha_t^i)dt + \sigma(X_t^i, \bar{\mu}_t^N)dW_t^i + \sigma^0(X_t^i, \bar{\mu}_t^N)dB_t$$

• Same cost functional! to player $i \in \{1, ..., N\}$

$$J^{i}(\boldsymbol{\alpha}^{1},\boldsymbol{\alpha}^{2},\ldots,\boldsymbol{\alpha}^{N}) = \mathbb{E}\Big[g(X_{T}^{i},\bar{\boldsymbol{\mu}}_{T}^{N}) + \int_{0}^{T} f(X_{t}^{i},\bar{\boldsymbol{\mu}}_{t}^{N},\boldsymbol{\alpha}_{t}^{i})dt\Big]$$

- Reduce to Markov feedback policies $\alpha_t^i = \alpha^i(t, X_t^1, \dots, X_t^N)$
- Central planner! \Rightarrow Forces all the players to use the same $\alpha^i = \alpha$!

 \circ exchangeability (symmetry in law) $\Rightarrow J^1 = \cdots = J^N$ is the cost to the society

• minimize any J^i with respect to α !

Part II. From propagation of chaos to MFG

Part II. From propagation of chaos to MFG

a. McKean-Vlasov SDEs

NO COMMON NOISE

General uncontrolled particle system

• Remove the control and the common noise!

$$dX_t^i = b(X_t^i, \bar{\mu}_t^N) dt + \sigma(X_t^i, \bar{\mu}_t^N) dW_t^i$$

$$\circ X_0^1, \dots, X_N^i$$
 i.i.d. (and \bot of noises), $\overline{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$

• \exists ! if the coefficients are Lipschitz in all the variables \rightsquigarrow need a suitable distance on space of measures

General uncontrolled particle system

• Remove the control and the common noise!

$$dX_t^i = b(X_t^i, \bar{\mu}_t^N) dt + \sigma(X_t^i, \bar{\mu}_t^N) dW_t^i$$

$$\circ X_0^1, \dots, X_N^i$$
 i.i.d. (and \bot of noises), $\overline{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$

- \exists ! if the coefficients are Lipschitz in all the variables \rightsquigarrow need a suitable distance on space of measures
- Use the Wasserstein distance on $\mathcal{P}_2(\mathbb{R}^d)$

$$\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d), \quad W_2(\mu, \nu) = \left(\inf_{\pi} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 d\pi(x, y)\right)^{1/2},$$

where π has μ and ν as marginals on $\mathbb{R}^d \times \mathbb{R}^d$ (\bigcirc)

 $\circ X$ and X' two r.v.'s $\Rightarrow W_2(\mathcal{L}(X), \mathcal{L}(X')) \le \mathbb{E}[|X - X'|^2]^{1/2}$

• Example
$$W_2\left(\frac{1}{N}\sum_{i=1}^N \delta_{x_i}, \frac{1}{N}\sum_{i=1}^N \delta_{x'_i}\right) \le \left(\frac{1}{N}\sum_{i=1}^N |x_i - x'_i|^2\right)^{1/2}$$
 (•)

McKean-Vlasov SDE

• Expect some decorrelation / averaging in the system as $N \uparrow \infty$ ()

o replace the empirical measure by the theoretical law

 $dX_t = b(X_t, \mathcal{L}(X_t))dt + \sigma(X_t, \mathcal{L}(X_t))dW_t$

• Cauchy-Lipschitz theory

 \circ assume *b* and σ Lipschitz continuous on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \Rightarrow$ unique solution for any given initial condition in L^2

• proof works as in the standard case taking advantage of

 $\mathbb{E}\left[\left|(b,\sigma)(X_t,\mathcal{L}(X_t))-(b,\sigma)(X_t',\mathcal{L}(X_t'))\right|^2\right] \leq C\mathbb{E}\left[|X_t-X_t'|^2\right]$

McKean-Vlasov SDE

• Expect some decorrelation / averaging in the system as $N \uparrow \infty$ ()

o replace the empirical measure by the theoretical law

 $dX_t = b(X_t, \mathcal{L}(X_t))dt + \sigma(X_t, \mathcal{L}(X_t))dW_t$

• Cauchy-Lipschitz theory

 \circ assume *b* and σ Lipschitz continuous on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \Rightarrow$ unique solution for any given initial condition in L^2

• proof works as in the standard case taking advantage of $\mathbb{E}\left[\left|(b,\sigma)(X_t,\mathcal{L}(X_t)) - (b,\sigma)(X'_t,\mathcal{L}(X'_t))\right|^2\right] \le C\mathbb{E}\left[|X_t - X'_t|^2\right]$

• Propagation of chaos

• each $(X_t^i)_{0 \le t \le T}$ converges in law to the solution of MKV SDE • particles get independent in the limit \rightsquigarrow for *k* fixed:

 $(X_t^1, \dots, X_t^k)_{0 \le t \le T} \xrightarrow{\mathcal{L}} \mathcal{L}(\mathrm{MKV})^{\otimes k} = \mathcal{L}((X_t)_{0 \le t \le T})^{\otimes k} \text{ as } N \nearrow \infty$

$$\circ \lim_{N \nearrow \infty} \sup_{0 \le t \le T} \mathbb{E}[(W_2(\bar{\mu}_t^N, \mathcal{L}(X_t))^2] = 0$$

Part II. From propagation of chaos to MFG

b. Formulation of the asymptotic problems

Ansatz

- Go back to the finite game
- Ansatz \rightsquigarrow at equilibrium

$$\boldsymbol{\alpha}_t^{i,\star} = \boldsymbol{\alpha}^N(t,X_t^i,\bar{\boldsymbol{\mu}}_t^N) \approx \boldsymbol{\alpha}(t,X_t^i,\bar{\boldsymbol{\mu}}_t^N)$$

• particle system at equilibrium

$$dX_t^i \approx b \Big(X_t^i, \bar{\mu}_t^N, \boldsymbol{\alpha}(t, X_t^i, \bar{\mu}_t^N) \Big) dt + \sigma \Big(X_t^i, \boldsymbol{\alpha}(t, X_t^i, \bar{\mu}_t^N) \Big) dW_t^i$$

- \circ particles should decorrelate as $N\nearrow\infty$
- $\circ \bar{\mu}_t^N$ should stabilize around some deterministic limit μ_t

Ansatz

- Go back to the finite game
- Ansatz \rightsquigarrow at equilibrium

$$\boldsymbol{\alpha}_t^{i,\star} = \boldsymbol{\alpha}^N(t,X_t^i,\bar{\boldsymbol{\mu}}_t^N) \approx \boldsymbol{\alpha}(t,X_t^i,\bar{\boldsymbol{\mu}}_t^N)$$

particle system at equilibrium

 $dX_t^i \approx b\left(X_t^i, \bar{\mu}_t^N, \boldsymbol{\alpha}(t, X_t^i, \bar{\mu}_t^N)\right) dt + \sigma\left(X_t^i, \boldsymbol{\alpha}(t, X_t^i, \bar{\mu}_t^N)\right) dW_t^i$

◦ particles should decorrelate as N Z ∞

 $\circ \bar{\mu}_t^N$ should stabilize around some deterministic limit μ_t

• What about an intrinsic interpretation of μ_t ?

• should describe the global state of the population in equilibrium

• in the limit setting, any particle that leaves the equilibrium should not modify $\mu_t \rightarrow$ leaving the equilibrium means that the cost increases \rightarrow any particle in the limit should solve an optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

Matching problem of MFG

• Define the asymptotic equilibrium state of the population as the solution of a fixed point problem

Matching problem of MFG

• Define the asymptotic equilibrium state of the population as the solution of a fixed point problem

(1) fix a flow of probability measures $(\mu_t)_{0 \le t \le T}$ (with values in $\mathcal{P}_2(\mathbb{R}^d)$)
Matching problem of MFG

• Define the asymptotic equilibrium state of the population as the solution of a fixed point problem

(1) fix a flow of probability measures $(\mu_t)_{0 \le t \le T}$ (with values in $\mathcal{P}_2(\mathbb{R}^d)$)

(2) solve the stochastic optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

$$dX_t = b(X_t, \mu_t, \alpha_t)dt + \sigma(X_t, \mu_t)dW_t$$

• with $X_0 = \xi$ being fixed on some set-up $(\Omega, \mathbb{F}, \mathbb{P})$ with a *d*-dimensional B.M.

• with cost
$$J(\alpha) = \mathbb{E}\left[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \alpha_t)dt\right]$$

Matching problem of MFG

• Define the asymptotic equilibrium state of the population as the solution of a fixed point problem

(1) fix a flow of probability measures $(\mu_t)_{0 \le t \le T}$ (with values in $\mathcal{P}_2(\mathbb{R}^d)$)

(2) solve the stochastic optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

$$dX_t = b(X_t, \mu_t, \alpha_t)dt + \sigma(X_t, \mu_t)dW_t$$

• with $X_0 = \xi$ being fixed on some set-up $(\Omega, \mathbb{F}, \mathbb{P})$ with a *d*-dimensional B.M.

• with
$$\boxed{\text{cost}} J(\alpha) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \alpha_t) dt\Big]$$

(3) let $(X_t^{\star,\mu})_{0 \le t \le T}$ be the unique optimizer (under nice assumptions) \rightsquigarrow find $(\mu_t)_{0 \le t \le T}$ such that

$$\mu_t = \mathcal{L}(X_t^{\star, \mu}), \quad t \in [0, T]$$

• Not a proof of convergence!

Part II. From propagation of chaos to MFG

c. Forward-backward systems

PDE point of view: HJB

 \bullet [PDE characterization of the optimal control problem] when σ is the identity

• Value function in environment $(\mu_t)_{0 \le t \le T}$

$$u(t,x) = \inf_{\alpha \text{ processes}} \mathbb{E} \Big[g(X_T, \mu_T) + \int_t^T f(X_s, \mu_s, \alpha_s) ds | X_t = x \Big]$$

PDE point of view: HJB

• PDE characterization of the optimal control problem when σ is the identity

• Value function in environment $(\mu_t)_{0 \le t \le T}$

$$u(t,x) = \inf_{\alpha \text{ processes}} \mathbb{E} \Big[g(X_T, \mu_T) + \int_t^T f(X_s, \mu_s, \alpha_s) ds | X_t = x \Big]$$

• *u* solution Backward HJB (●)

 $\left(\partial_t u + \frac{\Delta_x u}{2}\right)(t, x) + \underbrace{\inf_{\alpha \text{ deterministic}} \left[b(x, \mu_t, \alpha)\partial_x u(t, x) + f(x, \mu_t, \alpha)\right]}_{\alpha \text{ deterministic}} = 0$

standard Hamiltonian in HJB

• $H(x, \mu, \alpha, z) = b(x, \mu, \alpha) \cdot z + f(x, \mu, \alpha)$ (

 $\circ \alpha^{\star}(x,\mu,z) = \operatorname{argmin}_{\alpha \in A} H(x,\mu,\alpha,z) \rightsquigarrow \alpha^{\star} = \alpha^{\star}(x,\mu_t,\partial_x u(t,x))$

- Terminal boundary condition: $u(T, \cdot) = g(\cdot, \mu_T)$
- Pay attention that *u* depends on $(\mu_t)_t$!

Fokker-Planck

- Need for a PDE characterization of $(\mathcal{L}(X_t^{\star,\mu}))_t$
- Dynamics of $X^{\star,\mu}$ at equilibrium

$$dX_t^{\star,\mu} = b(X_t^{\star,\mu},\mu_t,\alpha^{\star}(X_t^{\star,\mu},\mu_t,\partial_x u^{\mu}(t,X_t^{\star,\mu})))dt + dW_t$$

• Law $(X_t^{\star,\mu})_{0 \le t \le T}$ satisfies Fokker-Planck (FP) equation (

$$\partial_t \mu_t = -\text{div}_x(\underbrace{b(x,\mu_t,\alpha^{\star}(x,\mu_t,\partial_x u^{\mu}(t,x))}_{b^{\star}(t,x)}\mu_t) + \frac{1}{2}\Delta_x \mu_t$$

Fokker-Planck

- Need for a PDE characterization of $(\mathcal{L}(X_t^{\star,\mu}))_t$
- Dynamics of $X^{\star,\mu}$ at equilibrium

$$dX_t^{\star,\mu} = b(X_t^{\star,\mu},\mu_t,\alpha^{\star}(X_t^{\star,\mu},\mu_t,\partial_x u^{\mu}(t,X_t^{\star,\mu})))dt + dW_t$$

• Law $(X_t^{\star,\mu})_{0 \le t \le T}$ satisfies Fokker-Planck (FP) equation (

$$\partial_t \mu_t = -\text{div}_x (\underbrace{b(x, \mu_t, \alpha^*(x, \mu_t, \partial_x u^{\mu}(t, x))}_{b^*(t, x)} \mu_t) + \frac{1}{2} \Delta_x \mu_t$$

• MFG equilibrium described by forward-backward in ∞ dimension Fokker-Planck (forward) HJB (backward)

 $\circ \infty$ dimensional analogue of

$$\dot{x}_t = b(x_t, y_t)dt, \quad x_0 = x^0$$

$$\dot{y}_t = -f(x_t, y_t)dt, \quad y_T = g(x_T)$$

Part II. From propagation of chaos to MFG

d. FBSDE formulation

• Environment $(\mu_t)_{0 \le t \le T}$ is fixed and cost functional of the type

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t) dt\Big]$$

 \circ assume f and g continuous and at most of quadratic growth

• Environment $(\mu_t)_{0 \le t \le T}$ is fixed and cost functional of the type

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t) dt\Big]$$

 \circ assume f and g continuous and at most of quadratic growth

• Interpret optimal paths as the forward component of an FBSDE \rightsquigarrow On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $(\xi, (W_t)_{0 \le t \le T})$

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mu_{s}, \boldsymbol{Y}_{s}, \boldsymbol{Z}_{s}\right) ds + \int_{0}^{t} \sigma(X_{s}, \mu_{s}) dW_{s}$$
$$Y_{t} = G(X_{T}, \mu_{T}) + \int_{t}^{T} F\left(X_{s}, \mu_{s}, \boldsymbol{Y}_{s}, \boldsymbol{Z}_{s}\right) ds - \int_{t}^{T} Z_{s} dW_{s}$$

• Environment $(\mu_t)_{0 \le t \le T}$ is fixed and cost functional of the type

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t) dt\Big]$$

 \circ assume f and g continuous and at most of quadratic growth

• Interpret optimal paths as the forward component of an FBSDE \rightsquigarrow On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $(\xi, (W_t)_{0 \le t \le T})$

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mu_{s}, \boldsymbol{Y}_{s}, \boldsymbol{Z}_{s}\right) ds + \int_{0}^{t} \sigma(X_{s}, \mu_{s}) dW_{s}$$
$$Y_{t} = G(X_{T}, \mu_{T}) + \int_{t}^{T} F\left(X_{s}, \mu_{s}, \boldsymbol{Y}_{s}, \boldsymbol{Z}_{s}\right) ds - \int_{t}^{T} Z_{s} dW_{s}$$

 $\circ \sigma$ invertible, *H* strict convex in α and coeff. bounded in x ⇒ ((*G*, *F*) = (*g*, *f*)) ⇒ represent value function!

• Environment $(\mu_t)_{0 \le t \le T}$ is fixed and cost functional of the type

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t) dt\Big]$$

 \circ assume f and g continuous and at most of quadratic growth

• Interpret optimal paths as the forward component of an FBSDE \rightsquigarrow On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $(\xi, (W_t)_{0 \le t \le T})$

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mu_{s}, \boldsymbol{Y}_{s}, \boldsymbol{Z}_{s}\right) ds + \int_{0}^{t} \sigma(X_{s}, \mu_{s}) dW_{s}$$
$$Y_{t} = G(X_{T}, \mu_{T}) + \int_{t}^{T} F\left(X_{s}, \mu_{s}, \boldsymbol{Y}_{s}, \boldsymbol{Z}_{s}\right) ds - \int_{t}^{T} Z_{s} dW_{s}$$

 $\circ \sigma$ invertible, *H* strict convex in α and coeff. bounded in x ⇒ ((*G*, *F*) = (*g*, *f*)) ⇒ represent value function!

∘ *H* strict convex in $(x, \alpha) \Rightarrow$ Pontryagin! $((G, F) = (\partial_x g, \partial_x H))$ (σ indep. of x) \Rightarrow represent gradient value function!

• Environment $(\mu_t)_{0 \le t \le T}$ is fixed and cost functional of the type

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t) dt\Big]$$

 \circ assume f and g continuous and at most of quadratic growth

• Interpret optimal paths as the forward component of an FBSDE \rightsquigarrow On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $(\xi, (W_t)_{0 \le t \le T})$

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mu_{s}, \boldsymbol{Y}_{s}, \boldsymbol{Z}_{s}\right) ds + \int_{0}^{t} \sigma(X_{s}, \mu_{s}) dW_{s}$$
$$Y_{t} = G(X_{T}, \mu_{T}) + \int_{t}^{T} F\left(X_{s}, \mu_{s}, \boldsymbol{Y}_{s}, \boldsymbol{Z}_{s}\right) ds - \int_{t}^{T} Z_{s} dW_{s}$$

 $\circ \sigma$ invertible, *H* strict convex in α and coeff. bounded in x ⇒ ((*G*, *F*) = (*g*, *f*)) ⇒ represent value function!

∘ *H* strict convex in $(x, \alpha) \Rightarrow$ Pontryagin! $((G, F) = (\partial_x g, \partial_x H))$ (σ indep. of x) \Rightarrow represent gradient value function!

∘ choose $(\mu_t)_{0 \le t \le T}$ as the law of optimal path! ⇒ characterize by FBSDE of McKean-Vlasov type

MKV FBSDE for the value function

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b\big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))\big) \, ds \\ &+ \int_0^t \sigma(X_s, \mathcal{L}(X_s)) dW_s \\ Y_t &= g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T f\big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))\big) \, ds - \int_t^T Z_s dW_s \end{aligned}$$

MKV FBSDE for the value function

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b(X_s, \mathcal{L}(X_s), \alpha^*(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))) ds \\ &+ \int_0^t \sigma(X_s, \mathcal{L}(X_s)) dW_s \\ Y_t &= g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T f(X_s, \mathcal{L}(X_s), \alpha^*(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s))))) ds - \int_t^T Z_s dW_s \end{aligned}$$

• Connection with PDE formulation

$$Y_s = u(s, X_s), \quad Z_s = \partial_x u(s, X_s) \sigma(X_s, \mu_s)$$

MKV FBSDE for the value function

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b(X_s, \mathcal{L}(X_s), \alpha^*(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))) ds \\ &+ \int_0^t \sigma(X_s, \mathcal{L}(X_s)) dW_s \\ Y_t &= g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T f(X_s, \mathcal{L}(X_s), \alpha^*(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))) ds - \int_t^T Z_s dW_s \end{aligned}$$

• Connection with PDE formulation

$$Y_s = u(s, X_s), \quad Z_s = \partial_x u(s, X_s) \sigma(X_s, \mu_s)$$

• Unique minimizer for each $(\mu_t)_{0 \le t \le T}$ if

 $\circ b, f, g, \sigma, \sigma^{-1}$ bounded in (x, μ) , Lipschitz in x

 $\circ b$ linear in α and f strictly convex and loc. Lip in α , with Lip(f) at most of linear growth in α

MKV FBSDE for the Pontryagin principle

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b \Big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s) \Big) \, ds + \int_0^t \sigma(X_s, \mathcal{L}(X_s)) dW_s \\ Y_t &= \partial_x g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T \partial_x H \Big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s), Y_s \Big) \, ds - \int_t^T Z_s dW_s \end{aligned}$$

MKV FBSDE for the Pontryagin principle

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b\big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s)\big) \, ds + \int_0^t \sigma(X_s, \mathcal{L}(X_s)) dW_s \\ Y_t &= \partial_x g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T \partial_x H\big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s), Y_s\big) \, ds - \int_t^T Z_s dW_s \end{aligned}$$

• Connection with PDE formulation

$$Y_s = \partial_x u(s, X_s), \quad Z_s = \partial_x^2 u(s, X_s) \sigma(\mu_s)$$

MKV FBSDE for the Pontryagin principle

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b\big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s)\big) \, ds + \int_0^t \sigma(X_s, \mathcal{L}(X_s)) dW_s \\ Y_t &= \partial_x g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T \partial_x H\big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s), Y_s\big) \, ds - \int_t^T Z_s dW_s \end{aligned}$$

• Connection with PDE formulation

$$Y_s = \partial_x u(s, X_s), \quad Z_s = \partial_x^2 u(s, X_s) \sigma(\mu_s)$$

• Unique minimizer for each $(\mu_t)_{0 \le t \le T}$ if

• σ indep. of x and $b(x, \mu, \alpha) = b_0(\mu) + b_1 x + b_2 \alpha$ • $\partial_x f, \partial_\alpha f, \partial_x g$ L-Lipschitz in (x, α)

• g and f convex in (x, α) with f strict convex in α

Part III. Solving MFG

a. Picture

Seeking a solution

• Any way \rightsquigarrow two-point-boundary-problem \Rightarrow

• Cauchy-Lipschitz theory in small time only

 \circ if Lipschitz coefficients (including the direction of the measure) \rightarrow existence and uniqueness in short time (see later on)

 \rightarrow existence and uniqueness of MFG equilibria in small time

Seeking a solution

• Any way \rightsquigarrow two-point-boundary-problem \Rightarrow

• Cauchy-Lipschitz theory in small time only

 \circ if Lipschitz coefficients (including the direction of the measure) \rightarrow existence and uniqueness in short time (see later on)

 \sim existence and uniqueness of MFG equilibria in small time

• What about arbitrary time?

 \circ existence \rightsquigarrow fixed point over the measure argument by means of compactness arguments

Schauder's theorem

 \circ uniqueness \rightsquigarrow require additional assumption

Part III. Solving MFG

b. Schauder fixed point theorem without common noise

Statement of the Schauder fixed point theorem

• Generalisation of Brouwer's theorem from finite to infinite dimension

• Let $(V, \|\cdot\|)$ be a normed vector space

 $\circ \emptyset \neq E \subset V \text{ with } E \text{ closed and convex}$

• $\phi: E \to E$ continuous such that $\phi(E)$ is relatively compact

 $\circ \Rightarrow$ existence of a fixed point to ϕ

Statement of the Schauder fixed point theorem

• Generalisation of Brouwer's theorem from finite to infinite dimension

• Let $(V, \|\cdot\|)$ be a normed vector space

 $\circ \emptyset \neq E \subset V \text{ with } E \text{ closed and convex}$

• $\phi: E \to E$ continuous such that $\phi(E)$ is relatively compact

 $\circ \Rightarrow$ existence of a fixed point to ϕ

• In MFG \rightsquigarrow what is *V*, what is *E*, what is ϕ ?

◦ recall that MFG equilibrium is a flow of measures $(\mu_t)_{0 \le t \le T}$ $E \subset C([0, T], \mathcal{P}_2(\mathbb{R}^d))$

need to embed into a linear structure

 $C([0,T], \mathcal{P}_2(\mathbb{R}^d)) \subset C([0,T], \mathcal{M}_1(\mathbb{R}^d))$

• $\mathcal{M}_1(\mathbb{R}^d)$ set of signed measures ν with $\int_{\mathbb{R}^d} |x| d|\nu|(x) < \infty$

Compactness on the space of probability measures

Equip M₁(ℝ^d) with a norm || · || (●) and restrict to P₁(ℝ^d) such that
convergence of (v_n)_{n≥1} in P₁(ℝ^d) implies weak convergence

$$\forall h \in C_b(\mathbb{R}^d, \mathbb{R}), \quad \lim_{n \to \infty} \int_{\mathbb{R}^d} h d\nu_n = \int_{\mathbb{R}^d} h d\nu$$

∘ if $(v_n)_{n \ge 1}$ has uniformly bounded moments of order p > 2

Unif. square integrability $\Rightarrow W_2(\nu_n, \nu) \rightarrow 0$

• says that the input in the coefficients varies continuously!

 $b(x, v_n, \alpha), f(x, v_n, \alpha), g(x, v_n)$

Compactness on the space of probability measures

Equip M₁(ℝ^d) with a norm || · || (●) and restrict to P₁(ℝ^d) such that
convergence of (v_n)_{n≥1} in P₁(ℝ^d) implies weak convergence

$$\forall h \in C_b(\mathbb{R}^d, \mathbb{R}), \quad \lim_{n \to \infty} \int_{\mathbb{R}^d} h d\nu_n = \int_{\mathbb{R}^d} h d\nu$$

∘ if $(\nu_n)_{n \ge 1}$ has uniformly bounded moments of order p > 2

Unif. square integrability $\Rightarrow W_2(\nu_n, \nu) \rightarrow 0$

• says that the input in the coefficients varies continuously!

$$b(x, v_n, \alpha), f(x, v_n, \alpha), g(x, v_n)$$

Compactness →→ if (v_n)_{n≥1} has bounded moments of order p > 2
(v_n)_{n≥1} admits a weakly convergent subsequence
then convergence for W₂ by unif. integrability and for || · || also

Application to MKV FBSDE

• Choose *E* as continuous $(\mu_t)_{0 \le t \le T}$ from [0, T] to $\mathcal{P}_2(\mathbb{R}^d)$

$$\sup_{0 \le t \le T} \int_{\mathbb{R}^d} |x|^4 d\mu_t(x) \le K \qquad \text{for some } K$$

Application to MKV FBSDE

• Choose *E* as continuous $(\mu_t)_{0 \le t \le T}$ from [0, T] to $\mathcal{P}_2(\mathbb{R}^d)$ $\sup_{0 \le t \le T} \int_{\mathbb{R}^d} |x|^4 d\mu_t(x) \le K \quad \text{for some } K$

• Construct $\phi \rightsquigarrow \text{fix } (\mu_t)_{0 \le t \le T}$ in *E* and solve HJB

 $\left(\partial_t u^{\mu} + \frac{\Delta_x u^{\mu}}{2}\right)(t, x) + \inf_{\alpha \text{ deterministic}} \left[b(x, \mu_t, \alpha)\partial_x u^{\mu}(t, x) + f(x, \mu_t, \alpha)\right] = 0$

optimal trajectory given by

$$dX_t^{\star,\mu} = b(X_t^{\star,\mu}, \mu_t, \alpha^{\star}(X_t^{\star,\mu}, \mu_t, \partial_x u(t, X_t^{\star,\mu})))dt + dW_t$$

 $\circ \operatorname{let} \phi \left(\mu = (\mu_t)_{0 \le t \le T} \right) = (\mathcal{L}(X_t^{\mu}))_{0 \le t \le T}$

Application to MKV FBSDE

• Choose *E* as continuous $(\mu_t)_{0 \le t \le T}$ from [0, T] to $\mathcal{P}_2(\mathbb{R}^d)$ $\sup_{0 \le t \le T} \int_{\mathbb{R}^d} |x|^4 d\mu_t(x) \le K \quad \text{for some } K$

• Construct $\phi \rightsquigarrow \text{fix } (\mu_t)_{0 \le t \le T}$ in *E* and solve HJB \circ optimal trajectory given by

$$dX_t^{\star,\mu} = b(X_t^{\star,\mu}, \mu_t, \alpha^{\star}(X_t^{\star,\mu}, \mu_t, \partial_x u(t, X_t^{\star,\mu})))dt + dW_t$$

 $\circ \operatorname{let} \phi \left(\mu = (\mu_t)_{0 \le t \le T} \right) = (\mathcal{L}(X_t^{\mu}))_{0 \le t \le T}$

• Assume bounded coefficients and $\mathbb{E}[|X_0|^4] < \infty$

• choose *K* such that $\mathbb{E}[|X_t^{\mu}|^4] \leq K$

 \Rightarrow *E* stable by ϕ

$$\circ W_2(\mathcal{L}(X_t^{\star,\mu}), \mathcal{L}(X_s^{\star,\mu})) \le C \mathbb{E}[|X_t^{\star,\mu} - X_s^{\star,\mu}|^2]^{1/2} \le C|t-s|^{1/2}$$

Conclusion

• Consider continuous $\mu = (\mu_t)_{0 \le t \le T}$ from [0, T] to $\mathcal{P}_2(\mathbb{R}^d)$

• for any $t \rightsquigarrow (\phi(\boldsymbol{\mu}))_t$ in a compact subset of $\mathcal{P}_2(\mathbb{R}^d)$

◦ [0, T] ∋ $t \mapsto (\phi(\mu))_t$ is uniformly continuous in μ

• by Arzelà-Ascoli \Rightarrow output lives in a compact subset of $E \subset C([0, T], \mathcal{P}_2(\mathbb{R}^d))$ (and thus of $C([0, T], \mathcal{M}_1(\mathbb{R}^d))$)

• Continuity of ϕ on $E \sim$ stability of the solution of non-degenerate HJB with respect to a continuous perturbation of the environment

Conclusion

• Consider continuous $\mu = (\mu_t)_{0 \le t \le T}$ from [0, T] to $\mathcal{P}_2(\mathbb{R}^d)$

• for any $t \rightsquigarrow (\phi(\boldsymbol{\mu}))_t$ in a compact subset of $\mathcal{P}_2(\mathbb{R}^d)$

◦ [0, T] ∋ $t \mapsto (\phi(\mu))_t$ is uniformly continuous in μ

• by Arzelà-Ascoli \Rightarrow output lives in a compact subset of $E \subset C([0, T], \mathcal{P}_2(\mathbb{R}^d))$ (and thus of $C([0, T], \mathcal{M}_1(\mathbb{R}^d))$)

• Continuity of ϕ on $E \sim$ stability of the solution of non-degenerate HJB with respect to a continuous perturbation of the environment

• Refinements to allow for unbounded coefficients

• example $\rightsquigarrow b$ linear in α , *f* strictly convex in α , with derivatives in α at most of linear growth in α

o other refinements to treat other types of growth

 \sim typical instance is linear-quadratic mean field games \Rightarrow HJB has a quadratic solution that may be found (almost) explicitly

Part III. Solving MFG

c. Uniqueness criterion

Need for monotonicity

• Simple 1*d* forward backward system

$$\begin{aligned} \dot{x}_t &= -y_t \\ \dot{y}_t &= 0 \end{aligned} \qquad y_T &= g(x_T) \end{aligned}$$

 \circ finite-dimensional master PDE \sim

inviscid $y_t = v(t, x_t)$ Burgers equation

$$-\partial_t v = -v\partial_x v, \quad v(T,x) = g$$

• well-posed if $g \nearrow \Rightarrow !$ of characteristics

 \circ if not \Rightarrow shocks may emerge in finite time \Rightarrow may loose !

• Plots of the characteristics if $g(x) = (-1 \lor x \land 1)$

Need for monotonicity

• Simple 1*d* forward backward system

$$\begin{aligned} \dot{x}_t &= -y_t \\ \dot{y}_t &= 0 \end{aligned} \qquad y_T &= g(x_T) \end{aligned}$$

 \circ finite-dimensional master PDE \sim

inviscid $y_t = v(t, x_t)$ Burgers equation

$$-\partial_t v = -v\partial_x v, \quad v(T,x) = g$$

• well-posed if $g \nearrow \Rightarrow !$ of characteristics

 \circ if not \Rightarrow shocks may emerge in finite time \Rightarrow may loose !

Lasry Lions monotonicity condition

• Recall following FBSDE result

• what is monotonicity condition in the direction of the measure?
Lasry Lions monotonicity condition

• Recall following FBSDE result

• what is monotonicity condition in the direction of the measure?

• Lasry Lions monotonicity condition

• b, σ do not depend on μ

 $\circ f(x,\mu,\alpha) = f_0(x,\mu) + f_1(x,\alpha) \ (\mu \text{ and } \alpha \text{ are separated})$

 \circ monotonicity property for f_0 and g w.r.t. μ

$$\int_{\mathbb{R}^d} (f_0(x,\mu) - f_0(x,\mu')) d(\mu - \mu')(x) \ge 0$$
$$\int_{\mathbb{R}^d} (g(x,\mu) - g(x,\mu')) d(\mu - \mu')(x) \ge 0$$

Lasry Lions monotonicity condition

• Recall following FBSDE result

• what is monotonicity condition in the direction of the measure?

• Lasry Lions monotonicity condition

• b, σ do not depend on μ

 $\circ f(x,\mu,\alpha) = f_0(x,\mu) + f_1(x,\alpha) \ (\mu \text{ and } \alpha \text{ are separated})$

 \circ monotonicity property for f_0 and g w.r.t. μ

$$\int_{\mathbb{R}^d} (f_0(x,\mu) - f_0(x,\mu')) d(\mu - \mu')(x) \ge 0$$
$$\int_{\mathbb{R}^d} (g(x,\mu) - g(x,\mu')) d(\mu - \mu')(x) \ge 0$$

• Example :

$$h(x,\mu) = \int_{\mathbb{R}^d} L(z,\rho \star \mu(z))\rho(x-z)dz$$

 \circ where *L* is \nearrow in second variable and ρ is even

• Assume that for any input $\mu = (\mu_t)_{0 \le t \le T}$ unique optimal control $\alpha^{\star,\mu}$

 \circ + existence of an MFG for a given initial condition

• Assume that for any input $\mu = (\mu_t)_{0 \le t \le T}$ unique optimal control $\alpha^{\star,\mu}$

• + existence of an MFG for a given initial condition

• Lasry Lions \Rightarrow uniqueness of MFG equilibrium!

- Assume that for any input $\mu = (\mu_t)_{0 \le t \le T}$ unique optimal control $\alpha^{\star,\mu}$ \circ + existence of an MFG for a given initial condition
- Lasry Lions \Rightarrow uniqueness of MFG equilibrium!

• if two different equilibria μ and $\mu' \rightarrow \alpha^{\star,\mu} \neq \alpha^{\star,\mu'}$

$$\underbrace{J^{\mu}(\alpha^{\star,\mu})}_{\text{cost under }\mu} < J^{\mu}(\alpha^{\star,\mu'}) \quad \text{and} \quad \underbrace{J^{\mu'}(\alpha^{\star,\mu'})}_{\text{cost under }\mu'} < J^{\mu'}(\alpha^{\star,\mu})$$

- Assume that for any input $\mu = (\mu_t)_{0 \le t \le T}$ unique optimal control $\alpha^{\star,\mu}$ \circ + existence of an MFG for a given initial condition
- Lasry Lions \Rightarrow uniqueness of MFG equilibrium!

• if two different equilibria μ and $\mu' \rightarrow \alpha^{\star,\mu} \neq \alpha^{\star,\mu'}$

so that

at
$$J^{\mu'}(\alpha^{\star,\mu}) - J^{\mu'}(\alpha^{\star,\mu'}) + J^{\mu}(\alpha^{\star,\mu'}) - J^{\mu}(\alpha^{\star,\mu}) > 0$$
$$J^{\mu'}(\alpha^{\star,\mu}) - J^{\mu}(\alpha^{\star,\mu}) - [J^{\mu'}(\alpha^{\star,\mu'}) - J^{\mu}(\alpha^{\star,\mu'})] > 0$$

- Assume that for any input $\mu = (\mu_t)_{0 \le t \le T}$ unique optimal control $\alpha^{\star,\mu}$ \circ + existence of an MFG for a given initial condition
- Lasry Lions \Rightarrow uniqueness of MFG equilibrium!

• if two different equilibria μ and $\mu' \rightarrow \alpha^{\star,\mu} \neq \alpha^{\star,\mu'}$

$$\underbrace{J^{\mu}(\alpha^{\star,\mu})}_{\text{cost under }\mu} < J^{\mu}(\alpha^{\star,\mu'}) \quad \text{and} \quad \underbrace{J^{\mu'}(\alpha^{\star,\mu'})}_{\text{cost under }\mu'} < J^{\mu'}(\alpha^{\star,\mu})$$

 $J^{\mu'}(\alpha^{\star,\mu}) - J^{\mu'}(\alpha^{\star,\mu'}) + J^{\mu}(\alpha^{\star,\mu'}) - J^{\mu}(\alpha^{\star,\mu}) > 0$ $J^{\mu'}(\alpha^{\star,\mu}) - J^{\mu}(\alpha^{\star,\mu}) - [J^{\mu'}(\alpha^{\star,\mu'}) - J^{\mu}(\alpha^{\star,\mu'})] > 0$

so that

$$\mathbb{E}\left[\underbrace{g(X_T^{\star,\mu},\mu_T') - g(X_T^{\star,\mu},\mu_T)}_{\int_{\mathbb{R}^d} (g(x,\mu_T') - g(x,\mu_T)) d\mu_T(x)} - \underbrace{\left(g(X_T^{\star,\mu'},\mu_T') - g(X_T^{\star,\mu'},\mu_T)\right)}_{\int_{\mathbb{R}^d} (g(x,\mu_T') - g(x,\mu_T)) d\mu_T'(x)} + \dots\right] > 0$$

◦ same for f_0 ⇒ LHS must be ≤ 0

 \Box Recall the form of an Ordinary DE (with values in \mathbb{R}^d)

$$\dot{X}_t = \mathbf{b}(t, X_t), \quad \text{or} \quad dX_t = \mathbf{b}(t, X_t)dt,$$

for a velocity field b with values in \mathbb{R}^d , called drift \Box call Stochastic DE

$$dX_t = \mathbf{b}(t, X_t)dt + \mathbf{\sigma}(t, X_t)\mathbf{d}\mathbf{W}_t,$$

for a volatility σ with values in $\mathbb{R}^{d \times d}$, and where $\rightsquigarrow dW_t = (dW_t^1, \cdots, dW_t^d)$ $\rightsquigarrow dW_t^1, \cdots, dW_t^d$ are \bot and $\mathcal{N}(0, dt)$ $\rightsquigarrow dW_t$ is independent of the past before t \Box (*W_t*)_{*t* \geq 0} B.M. with values in \mathbb{R}^d is

$$W_t = (W_t^1, \cdots, W_t^d)$$

 $W_t^1)_{t \ge 0}, \cdots, (W_t^d)_{t \ge 0} \text{ independent}$ $W_{t+dt}^i - W_t^i \text{ of the past before } t \text{ and } \mathcal{N}(0, dt) \text{ distributed}$ w plot in d = 2

□ Recall Law of Large Numbers

→ take sequence $(X_n)_{n \ge 1}$ of independent r.v. with values in \mathbb{R}^d → take $φ : \mathbb{R}^d → \mathbb{R}$ bounded continuous

$$\mathbb{P}\left(\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \varphi(X_n) = \mathbb{E}[\varphi(X_1)]\right) = 1$$

 \Box Define the empirical measure $\bar{\mu}^N = \frac{1}{N} \sum_{k=1}^N \delta_{X_k}$ and call $\mu = \mathcal{L}(X_1)$

$$\mathbb{P}\left(\lim_{N\to\infty}\int_{\mathbb{R}^d}\varphi d\bar{\mu}^N=\int_{\mathbb{R}^d}\varphi d\mu\right)=1$$

 \rightsquigarrow take φ in countable subset of $C_0(\mathbb{R}^d)$, set of bounded continuous functions that tend to 0 at infinity,

$$\mathbb{P}\Big(\forall \varphi \in C_0(\mathbb{R}^d), \quad \lim_{N \to \infty} \int_{\mathbb{R}^d} \varphi d\bar{\mu}^N = \int_{\mathbb{R}^d} \varphi d\mu\Big) = 1$$

and then $\mathbb{P}(\mu^N \Rightarrow \mu) = 1!$

 $\Box u$ (classical) solution

$$\left(\partial_t u + \frac{\Delta_x u}{2}\right)(t, x) + \inf_{\beta \in \mathbf{A}} \left[b(x, \mu_t, \beta)\partial_x u(t, x) + f(x, \mu_t, \beta)\right] = 0$$

$$\rightsquigarrow H(x,\mu,\alpha,z) = b(x,\mu,\alpha) \cdot z + f(x,\mu,\alpha)$$

 $\rightsquigarrow \alpha^{\star}(x,\mu,z) = \operatorname{argmin}_{\alpha \in A} H(x,\mu,\alpha,z) \rightsquigarrow \alpha^{\star} = \alpha^{\star}(x,\mu_t,\partial_x u(t,x))$

 $\Box \text{ (Exercise) take } dX_t = b(X_t, \mu_t, \alpha_t)dt + dW_t$

→ Apply Itô's formula to prove that

$$d(u(t, X_t) + \int_0^t f(X_s, \mu_s, \alpha_s) ds) \ge \left[H(X_t, \mu_t, \alpha_t, \partial_x u(t, X_t)) - \inf_{\beta} H(X_t, \mu_t, \beta, \partial_x u(t, X_t))\right] dt + dm_t$$

with $(m_t)_{0 \le t \le T}$ zero expectation \rightsquigarrow take expectation and $\int_0^T \dots dt$ and get $J(\alpha) \ge \mathbb{E}[u(0, X_0)]$ optimal feedback is $\alpha^*(x, \mu_t, \partial_x u(t, x))$ $\Box \operatorname{Recall} H(x, \mu, \alpha, z) = b(x, \mu, \alpha) \cdot z + f(x, \mu, \alpha)$ $\rightsquigarrow \operatorname{take} b(x, \mu, \alpha) = \alpha$ $\rightsquigarrow \operatorname{take} f(x, \mu, \alpha) = f(x, \mu) + \frac{1}{2} |\alpha|^2$ $\rightsquigarrow \operatorname{take} A = \mathbb{R}^d$

 \Box Then, $\alpha^{\star}(x,\mu,z) = -z$

~> HJB becomes

 $\left(\partial_t u + \frac{1}{2}\Delta_x u\right)(t,x) - \frac{1}{2}|\partial_x u(t,x)|^2 + f(x,\mu_t) = 0$

•

□ Take

$$dX_t = b(t, X_t)dt + dW_t$$

 \rightsquigarrow find an equation for $(\mu_t = \mathcal{L}(X_t))_{0 \le t \le T}$?

□ Fokker-Planck

$$\partial_t \mu_t = -\operatorname{div}_x(b(t, x)\mu_t) + \frac{1}{2}\Delta_x \mu_t$$

 \rightsquigarrow take φ smooth test function (with compact support) and expand

$$\mathbb{E}[\varphi(X_t)] = \int_{\mathbb{R}^d} \varphi(x) d\mu_t(x)$$

→ Itô's formula yields

$$\frac{d}{dt}\mathbb{E}[\varphi(X_t)] = \mathbb{E}\Big[b(t, X_t) \cdot \partial_x \varphi(X_t) + \frac{1}{2}\Delta_x \varphi(X_t)\Big]$$

that is

$$\frac{d}{dt} \int_{\mathbb{R}^d} \varphi(x) d\mu_t(x) = \int_{\mathbb{R}^d} b(t, x) \cdot \partial_x \varphi(x) d\mu_t(x) + \frac{1}{2} \int_{\mathbb{R}^d} \Delta_x \varphi(x) d\mu_t(x)$$

□ Take

$$dX_t = b(t, X_t)dt + dW_t$$

↔ find an equation for $(\mu_t = \mathcal{L}(X_t))_{0 \le t \le T}$? □ Fokker-Planck

$$\partial_t \mu_t = -\operatorname{div}_x(b(t, x)\mu_t) + \frac{1}{2}\Delta_x \mu_t$$

 \rightsquigarrow take φ smooth test function (with compact support) and expand

$$\mathbb{E}[\varphi(X_t)] = \int_{\mathbb{R}^d} \varphi(x) d\mu_t(x)$$

v Itô's formula yields

$$\frac{d}{dt}\mathbb{E}[\varphi(X_t)] = \mathbb{E}\Big[b(t, X_t) \cdot \partial_x \varphi(X_t) + \frac{1}{2}\Delta_x \varphi(X_t)\Big]$$

that is

$$\frac{d}{dt}\langle\varphi,\mu_t\rangle = \left\langle\varphi,-\operatorname{div}_x(b(t,\cdot)\mu_t + \frac{1}{2}\Delta_x\mu_t\right\rangle \quad \blacktriangleleft$$

 \Box Take θ random variable with uniform distribution on $\{1, \dots, N\}$ and, for \mathbf{x}, \mathbf{x}' in $(\mathbb{R}^d)^N$, consider

$$X=\theta_{\mathbf{x}},\quad X'=\theta_{\mathbf{x}'}$$

$$\leadsto \mathcal{L}(X) = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i}, \ \mathcal{L}(X') = \frac{1}{N} \sum_{i=1}^{N} \delta_{x'_i}$$

□ Backward SDE

$$Y_t = G(X_T) + \int_t^T F(X_s, \boldsymbol{Y_s}, \boldsymbol{Z_s}) \, ds - \int_t^T Z_s dW_s$$

→ strange to have two unknowns and one equation!

 \Box make it clear with $F \equiv 0$

→ always want Y_t not to anticipate on the future → cannot be $Y_t = G(X_T)$ → only way is $Y_t = \mathbb{E}[G(X_T) | \mathcal{F}_t]$

 \rightsquigarrow Theorem from probability that there exists a unique Z!

4

 \Box Choose $\|\cdot\|$ as Kantorovich Rubinstein norm (see Bogachev)

$$||\mu|| = |\mu(\mathbb{R}^d)| + \sup\left\{\int_{\mathbb{R}^d} \ell(x)d\mu(x), \quad \ell \text{ 1-Lip, } \ell(0) = 0\right\}$$

 \Box Then Kantorovich formula for \mathcal{W}_1

 $\mathcal{W}_1(\mu,\mu') = \|\mu-\mu'\|$

 \Box If $p \ge 1$ and $\mathcal{P}_p(\mathbb{R}^d)$ probability measures with finite *p*-moments

$$\mu, \nu \in \mathcal{P}_p(\mathbb{R}^d), \quad W_p(\mu, \nu) = \left(\inf_{\pi} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^p d\pi(x, y)\right)^{1/p},$$

where π has μ and ν as marginals on $\mathbb{R}^d \times \mathbb{R}^d$

□ First order condition of optimality with noise

$$dX_t = b(X_t, \mu_t, \alpha_t)dt + \sigma dW_t$$

↔ Pontryagin system (Peng)

$$\begin{aligned} X_t &= X_0 + \int_0^t b \Big(X_s, \mu_s, \alpha^* (X_s, \mu_s, Y_s) \Big) \, ds \\ &+ \sigma W_t \\ Y_t &= \partial_x g(X_T, \mu_T) + \int_t^T \partial_x H \Big(X_s, \mu_s, \alpha^* (X_s, \mu_s, Y_s), Y_s \Big) \, ds \\ &- \int_t^T Z_s dW_s \end{aligned}$$

.

□ First order condition of optimality with noise

$$dX_t = b(X_t, \mu_t, \alpha_t)dt + \sigma dW_t$$

↔ Pontryagin system (Peng)

$$\begin{aligned} X_t &= X_0 + \int_0^t b \Big(X_s, \mu_s, \alpha^* (X_s, \mu_s, Y_s) \Big) \, ds \\ &+ \sigma W_t \\ Y_t &= \partial_x g(X_T, \mu_T) + \int_t^T \partial_x H \Big(X_s, \mu_s, \alpha^* (X_s, \mu_s, Y_s), Y_s \Big) \, ds \\ &- \int_t^T Z_s dW_s \end{aligned}$$

.

□ First order condition of optimality with noise

$$dX_t = b(X_t, \mu_t, \alpha_t)dt + \sigma dW_t$$

↔ Pontryagin system (Peng)

$$\begin{aligned} X_t &= X_0 + \int_0^t b \Big(X_s, \mathcal{L}(X_s), \alpha^* (X_s, \mathcal{L}(X_s), Y_s) \Big) \, ds \\ &+ \sigma W_t \end{aligned}$$
$$Y_t &= \partial_x g(X_T, \mathcal{L}(X_T)) + \int_t^T \partial_x H \Big(X_s, \mathcal{L}(X_s), \alpha^* (X_s, \mathcal{L}(X_s), Y_s), Y_s \Big) \, ds \\ &- \int_t^T Z_s dW_s \end{aligned}$$

□ Summary: Forward-Backward systems may be ill-posed! But:
 ~> Noise restores uniqueness!
 ~> Monotonicity (↔ convexity)restores uniqueness!

□ Hint: Either use monotonicity or interpret the FB system as the Pontryagin system of a standard optimal control problem with linear–convex coefficients

Exercise: What does monotonicity for the MFG mean for the control problem?

□ Hint : Write monotonicity as

$$\int_{\mathbb{R}^d} \left[\int_{\mathbb{R}^d} F(x-y) dm(y) - \int_{\mathbb{R}^d} F(x-y) dm'(y) \right] d(m-m')(x) \ge 0$$

$$\Leftrightarrow \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x-y) d(m-m')(y) d(m-m')(x) \ge 0$$

 \rightsquigarrow second-order term is positive in linearization \Leftrightarrow convexity!

$\Box \ \boxed{\text{Examples}}:$ $\rightsquigarrow F(z) = -|z|^2$ $\rightsquigarrow F(z) = \int_{\mathbb{R}^d} \exp(iz \cdot s) d\lambda(s), \text{ where } \lambda \text{ is symmetric positive finite measure}$

(take λ a Gaussian, take λ a Cauchy, take λ a combination of two Dirac masses...)

 \Box Make a convex perturbation of $\mu \in \mathcal{P}(\mathbb{R}^d)$

 \rightsquigarrow take $\nu \in \mathcal{P}(\mathbb{R}^d)$ and expand

$$\frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x-y) d((1-\varepsilon)\mu(x) + \varepsilon \nu(x)) d((1-\varepsilon)\mu(x) + \varepsilon \nu(x))$$

$$= \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x-y) d\mu(x) d\mu(y)$$

$$+ \varepsilon \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x-y) d\mu(x) d(\nu-\mu)(y)$$

$$+ \varepsilon^2 \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x-y) d(\nu-\mu)(x) d(\nu-\mu)(y)$$

 \rightsquigarrow regard $\nu - \mu$ as direction of linearization

. ∢