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Part I. Motivation

a. General philosophy



Basic purpose
• Interacting particles / players

◦ controlled players in mean-field interaction

◦ particles have dynamical states! stochastic diff. equation

◦ mean-field!
symmetric interaction with whole population
no privileged interaction based on the labels

• Associate cost functional with each player

◦ find equilibria w.r.t. cost functionals

◦ shape of the equilibria for a large population?

• Different notions of equilibria

◦ players decide on their own find a compromise inside the
population⇒ notion of Nash equilibrium

◦ players obey a common center of decision minimize the
global cost to the collectivity⇒ notion of Social optimizer

• Both cases{ asymptotic equilibria as the number of players ↑ ∞?
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Typical examples...



Asymptotic formulation
• Paradigm

◦ mean-field / symmetry! propagation of chaos / LLN

◦ reduce the asymptotic analysis to one typical player with
interaction with a theoretical distribution of the population?

◦ decrease the complexity to solve asymptotic formulation first

• Program

◦ Existence of asymptotic equilibria ? Uniqueness? Shape?

◦ Use asymptotic equilibria as quasi-equilibria in finite-game

◦ Prove convergence of equilibria in finite-player-systems

• Asymptotic formulation of Nash equilibria Mean-field games!
[Lasry-Lions (06), Huang-Caines-Malhamé (06), Bertucci,
Cardaliaguet, Achdou, Gangbo, Gomes, Porreta (PDE), Bensoussan,
Carmona, Cecchin, D., Djete, Lacker (Probability)]

• Common center of decision 
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Carmona, Cecchin, D., Djete, Lacker (Probability)]

• Common center of decision optimal control of McKean-Vlasov
SDEs or Fokker-Planck PDEs Mean-field control!



Part I. Motivation

b. Nash equilibria within a finite system



General formulation
• Controlled system of N interacting particles with mean-field
interaction through the global state of the population

◦ dynamics of particle number i ∈ {1, . . . ,N}

dXi
t︸︷︷︸

∈ Rd

= b
(
Xi

t , global state of the collectivity, αi
t
)
dt

+ σ
(
Xi

t , global state
)

dW i
t︸︷︷︸

idiosyncratic noises

+ σ0(Xi
t , global state

)
dBt︸︷︷︸

common/systemic noise

• Rough description of the probabilistic set-up

◦ (Bt,W1
t , . . . ,W

N
t )0≤t≤T independent B.M. with values in Rd

◦ (αi
t)0≤t≤T progressively-measurable processes with values in A

(closed convex ⊂ Rk)

◦ i.i.d. initial conditions ⊥⊥ noises
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Empirical measure
• Code the state of the population at time t through µ̄N

t = 1
N

∑N
i=1 δXi

t

 probability measure on Rd

◦ P2(Rd){ set of probabilities on Rd with finite 2nd moments

• Express the coefficients as
b : Rd × P2(Rd) × A→ Rd,

σ, σ0 : Rd × P2(Rd)→ Rd×d,

◦ examples: b(x, µ, α) = b
(
x,

∫
Rd ϕdµ, α

)
,

∫
Rd b(x, v, α)dµ(v)

◦ rewrite the dynamics of the particles

dXi
t = b

(
Xi

t , µ̄
N
t , α

i
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t + σ0(Xi
t , µ̄

N
t
)
dBt

• Cost functional to player i ∈ {1, . . . ,N}
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Ji(α1,α2, . . . ,αN)
= E

[
g
(
Xi

T , µ̄
N
T
)

+

∫ T

0
f
(
Xi

t , µ̄
N
t , α

i
t
)
dt

]
◦ same (f , g) for all i but Ji depends on the others through µ̄N
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N
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)
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t + σ0(Xi
t , µ̄

N
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)
dBt

• Cost functional to player i ∈ {1, . . . ,N} (an example)

Ji = E
[ 1
N

N∑
j=1

g
(
Xi

T − Xj
T ) +

∫ T

0

( 1
N

N∑
j=1

f
(
Xi

t − Xj
t
)

+ |αi
t|

2
)
dt

]
◦ cost reads potential energy plus kinetic energy



Nash equilibrium
• Each player is willing to minimize its own cost functional

◦ need for a compromise { Nash equilibrium

• Say that a N-tuple of strategies (α1,?, . . . ,αN,?) is a compromise if

◦ no interest for any player to leave the compromise

◦ change αi,? { αi ⇒ Ji ↗

Ji(α1,?, . . . ,αi,?, . . . ,αN,?) ≤ Ji(α1,?, . . . ,αi, . . .αN,?)
•Meaning of freezing α1,?, . . . ,αi−1,?,αi+1,?,αN,?

◦ freezing the processes{ Nash equilibrium in open loop

◦ αi
t = αi(t,X1

t , . . . ,X
N
t ){ each function αi is a Markov feedback

{ Nash over of Markov loop
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{ Nash over of Markov loop

◦ leads to different equilibria! but expect that there is no
difference in the asymptotic setting



Nash equilibrium
• Each player is willing to minimize its own cost functional

◦ need for a compromise { Nash equilibrium

• Say that a N-tuple of strategies (α1,?, . . . ,αN,?) is a compromise if

◦ no interest for any player to leave the compromise

◦ change αi,? { αi ⇒ Ji ↗

Ji(α1,?, . . . ,αi,?, . . . ,αN,?) ≤ Ji(α1,?, . . . ,αi, . . .αN,?)
•Meaning of freezing α1,?, . . . ,αi−1,?,αi+1,?,αN,?

◦ freezing the processes{ Nash equilibrium in open loop

◦ αi
t = αi(t,X1

t , . . . ,X
N
t ){ each function αi is a Markov feedback

{ Nash over of Markov loop

• Central planner { everybody uses same feedback! and minimize
the common cost!



Part I. Motivation

c. Example



Exhaustible resources [Guéant Lasry Lions]

• N producers of oil{ Xi
t (estimated reserve) at time t

dXi
t = −αi

tdt + σXi
tdW i

t

◦ αi
t { instantaneous production rate

◦ σ common volatility for the perception of the reserve

◦ should be a constraint Xi
t ≥ 0

• Optimize the profit of a producer

Ji(α1, . . . ,αN) = E

∫ ∞

0
exp(−rt)

(
αi

tPt − c(αi
t)
)
dt

◦ Pt is selling price, c cost production

◦ mean-field constraint{ selling price is a function of the
mean-production

Pt = P
( 1
N

N∑
i=1

αi
t
)

◦ slightly different! interaction through the law of the control
{ extended MFG [Gomes al., Carmona D., Cardaliaguet Lehalle]
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Part I. Motivation

d. Central planner



Optimization problem over the whole population
• Same dynamics as before! rewrite the dynamics of the particles

dXi
t = b

(
Xi

t , µ̄
N
t , α

i
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t + σ0(Xi
t , µ̄

N
t
)
dBt

• Same cost functional! to player i ∈ {1, . . . ,N}

Ji(α1,α2, . . . ,αN)
= E

[
g
(
Xi

T , µ̄
N
T
)

+

∫ T

0
f
(
Xi

t , µ̄
N
t , α

i
t
)
dt

]
• Reduce to Markov feedback policies αi

t = αi(t,X1
t , . . . ,X

N
t )

• Central planner! ⇒ Forces all the players to use the same αi = α!

◦ exchangeability (symmetry in law)⇒ J1 = · · · = JN is the cost
to the society

◦ minimize any Ji with respect to α!



Part II. From propagation of chaos to MFG



Part II. From propagation of chaos to MFG

a. McKean-Vlasov SDEs

NO COMMON NOISE



General uncontrolled particle system
• Remove the control and the common noise!

dXi
t = b

(
Xi

t , µ̄
N
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t

◦ X1
0 , . . . ,X

i
N i.i.d. (and ⊥⊥ of noises), µ̄N

t =
1
N

N∑
i=1

δXi
t

• ∃! if the coefficients are Lipschitz in all the variables need a
suitable distance on space of measures

• Use the Wasserstein distance on P2(Rd)

µ, ν ∈ P2(Rd), W2(µ, ν) =

(
inf
π

∫
Rd×Rd

|x − y|2dπ(x, y)
)1/2

,

where π has µ and ν as marginals on Rd × Rd ( )

◦ X and X′ two r.v.’s⇒ W2(L(X),L(X′)) ≤ E[|X − X′|2]1/2

• Example W2
( 1
N

N∑
i=1

δxi ,
1
N

N∑
i=1

δx′i

)
≤

( 1
N

N∑
i=1

|xi − x′i |
2
)1/2

( )
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McKean-Vlasov SDE
• Expect some decorrelation / averaging in the system as N ↑ ∞ ( )

◦ replace the empirical measure by the theoretical law

dXt = b
(
Xt,L(Xt)

)
dt + σ

(
Xt,L(Xt)

)
dWt

• Cauchy-Lipschitz theory

◦ assume b and σ Lipschitz continuous on Rd × P2(Rd)⇒ unique
solution for any given initial condition in L2

◦ proof works as in the standard case taking advantage of

E
[∣∣∣(b, σ)

(
Xt,L(Xt)

)
− (b, σ)

(
X′t ,L(X′t )

)∣∣∣2] ≤ CE
[
|Xt − X′t |

2]

• Propagation of chaos

◦ each (Xi
t)0≤t≤T converges in law to the solution of MKV SDE

◦ particles get independent in the limit{ for k fixed:

(X1
t , . . . ,X

k
t )0≤t≤T −→

L
L(MKV)⊗k = L

(
(Xt)0≤t≤T

)⊗k as N ↗ ∞

◦ lim
N↗∞

sup
0≤t≤T

E
[(

W2(µ̄N
t ,L(Xt)

)2]
= 0
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Part II. From propagation of chaos to MFG

b. Formulation of the asymptotic problems



Ansatz
• Go back to the finite game

• Ansatz{ at equilibrium

αi,?
t = αN(

t,Xi
t , µ̄

N
t
)
≈ α

(
t,Xi

t , µ̄
N
t
)

◦ particle system at equilibrium

dXi
t ≈ b

(
Xi

t , µ̄
N
t , α(t,Xi

t , µ̄
N
t )

)
dt + σ

(
Xi

t , α(t,Xi
t , µ̄

N
t )

)
dW i

t

◦ particles should decorrelate as N ↗ ∞

◦ µ̄N
t should stabilize around some deterministic limit µt

•What about an intrinsic interpretation of µt ?

◦ should describe the global state of the population in equilibrium

◦ in the limit setting, any particle that leaves the equilibrium
should not modify µt { leaving the equilibrium means that the cost
increases{ any particle in the limit should solve an optimal control
problem in the environment (µt)0≤t≤T
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Matching problem of MFG
• Define the asymptotic equilibrium state of the population as the
solution of a fixed point problem

(1) fix a flow of probability measures (µt)0≤t≤T (with values in
P2(Rd))

(2) solve the stochastic optimal control problem in the environment
(µt)0≤t≤T

dXt = b(Xt, µt, αt)dt + σ(Xt, µt)dWt

◦ with X0 = ξ being fixed on some set-up (Ω,F,P) with a
d-dimensional B.M.

◦ with cost J(α) = E
[
g(XT , µT ) +

∫ T
0 f (Xt, µt, αt)dt

]
(3) let (X?,µ

t )0≤t≤T be the unique optimizer (under nice assumptions)
{ find (µt)0≤t≤T such that

µt = L
(
X?,µ

t
)
, t ∈ [0,T]

• Not a proof of convergence!
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• Not a proof of convergence!



Part II. From propagation of chaos to MFG

c. Forward-backward systems



PDE point of view: HJB
• PDE characterization of the optimal control problem when σ is
the identity

• Value function in environment (µt)0≤t≤T

u(t, x) = inf
α processes

E
[
g(XT , µT ) +

∫ T

t
f (Xs, µs, αs)ds|Xt = x

]

• u solution Backward HJB ( )(
∂tu +

∆xu
2

)
(t, x) + inf

α deterministic

[
b
(
x, µt, α

)
∂xu(t, x) + f

(
x, µt, α

)]︸                                                   ︷︷                                                   ︸
standard Hamiltonian in HJB

= 0

• H(x, µ, α, z) = b(x, µ, α) · z + f (x, µ, α) ( )

◦ α?(x, µ, z) = argminα∈AH(x, µ, α, z){ α? = α?(x, µt, ∂xu(t, x))

• Terminal boundary condition: u(T , ·) = g(·, µT )

• Pay attention that u depends on (µt)t!
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Fokker-Planck
• Need for a PDE characterization of (L(X?,µ

t ))t

• Dynamics of X?,µ at equilibrium

dX?,µ
t = b

(
X?,µ

t , µt, α
?(X?,µ

t , µt, ∂xuµ(t,X?,µ
t ))

)
dt + dWt

• Law (X?,µ
t )0≤t≤T satisfies Fokker-Planck (FP) equation ( )

∂tµt = −divx
(
b(x, µt, α

?(x, µt, ∂xuµ(t, x))︸                            ︷︷                            ︸
b?(t, x)

µt
)

+
1
2

∆xµt

•MFG equilibrium described by forward-backward in∞ dimension

Fokker-Planck (forward)
HJB (backward)

◦ ∞ dimensional analogue of

ẋt = b(xt, yt)dt, x0 = x0

ẏt = −f (xt, yt)dt, yT = g(xT )
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Part II. From propagation of chaos to MFG

d. FBSDE formulation



Optimal control and FBSDEs
• Environment (µt)0≤t≤T is fixed and cost functional of the type

J(α) = E
[
g(XT , µT ) +

∫ T

0
f (Xt, µt, αt)dt

]
◦ assume f and g continuous and at most of quadratic growth

• Interpret optimal paths as the forward component of an FBSDE 
On (Ω,F,P) with F generated by (ξ, (Wt)0≤t≤T )

Xt = ξ +

∫ t

0
b
(
Xs, µs,Ys,Zs

)
ds +

∫ t

0
σ(Xs, µs)dWs

Yt = G(XT , µT ) +

∫ T

t
F

(
Xs, µs,Ys,Zs

)
ds −

∫ T

t
ZsdWs

◦ σ invertible, H strict convex in α and coeff. bounded in x⇒
((G,F) = (g, f ))⇒ represent value function!

◦ H strict convex in (x, α)⇒ Pontryagin! ((G,F) = (∂xg, ∂xH)) (σ
indep. of x)⇒ represent gradient value function!

◦ choose (µt)0≤t≤T as the law of optimal path! ⇒ characterize by
FBSDE of McKean-Vlasov type
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MKV FBSDE for the value function
• Consider, on (Ω,F,P), the MKV FBSDE

Xt = ξ +

∫ t

0
b
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds

+

∫ t

0
σ
(
Xs,L(Xs)

)
dWs

Yt = g
(
XT ,L(XT )

)
+

∫ T

t
f
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds −
∫ T

t
ZsdWs

• Connection with PDE formulation

Ys = u(s,Xs), Zs = ∂xu(s,Xs)σ(Xs, µs)

• Unique minimizer for each (µt)0≤t≤T if

◦ b, f , g, σ, σ−1 bounded in (x, µ), Lipschitz in x

◦ b linear in α and f strictly convex and loc. Lip in α, with Lip(f )
at most of linear growth in α
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MKV FBSDE for the Pontryagin principle
• Consider, on (Ω,F,P), the MKV FBSDE
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Xs,L(Xs), α?

(
Xs,L(Xs),Ys
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,Ys
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ds −

∫ T

t
ZsdWs

• Connection with PDE formulation

Ys = ∂xu(s,Xs), Zs = ∂2
xu(s,Xs)σ(µs)

• Unique minimizer for each (µt)0≤t≤T if

◦ σ indep. of x and b(x, µ, α) = b0(µ) + b1x + b2α

◦ ∂xf , ∂αf , ∂xg L-Lipschitz in (x, α)

◦ g and f convex in (x, α) with f strict convex in α
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Part III. Solving MFG

a. Picture



Seeking a solution
• Any way{ two-point-boundary-problem⇒

◦ Cauchy-Lipschitz theory in small time only

◦ if Lipschitz coefficients (including the direction of the measure)
{ existence and uniqueness in short time (see later on)

{ existence and uniqueness of MFG equilibria in small time

• What about arbitrary time?

◦ existence{ fixed point over the measure argument by means of
compactness arguments

Schauder’s theorem

◦ uniqueness{ require additional assumption
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Part III. Solving MFG

b. Schauder fixed point theorem without common
noise



Statement of the Schauder fixed point theorem
• Generalisation of Brouwer’s theorem from finite to infinite
dimension

• Let (V , ‖ · ‖) be a normed vector space

◦ ∅ , E ⊂ V with E closed and convex

◦ φ : E → E continuous such that φ(E) is relatively compact

◦ ⇒ existence of a fixed point to φ

• In MFG{ what is V , what is E, what is φ?

◦ recall that MFG equilibrium is a flow of measures (µt)0≤t≤T

E ⊂ C
(
[0,T],P2(Rd)

)
◦ need to embed into a linear structure

C
(
[0,T],P2(Rd)

)
⊂ C

(
[0,T],M1(Rd)

)
◦ M1(Rd) set of signed measures ν with

∫
Rd |x|d|ν|(x) < ∞
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Compactness on the space of probability measures

• EquipM1(Rd) with a norm ‖ · ‖ ( ) and restrict to P1(Rd) such that

◦ convergence of (νn)n≥1 in P1(Rd) implies weak convergence

∀h ∈ Cb(Rd,R), lim
n→∞

∫
Rd

hdνn =

∫
Rd

hdν

◦ if (νn)n≥1 has uniformly bounded moments of order p > 2

Unif. square integrability⇒ W2(νn, ν)→ 0

◦ says that the input in the coefficients varies continuously!

b(x, νn, α), f (x, νn, α), g(x, νn)

• Compactness if (νn)n≥1 has bounded moments of order p > 2

◦ (νn)n≥1 admits a weakly convergent subsequence

◦ then convergence for W2 by unif. integrability and for ‖ · ‖ also
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Application to MKV FBSDE

• Choose E as continuous (µt)0≤t≤T from [0,T] to P2(Rd)

sup
0≤t≤T

∫
Rd
|x|4dµt(x) ≤ K for some K

• Construct φ{ fix (µt)0≤t≤T in E and solve HJB ◦ let

φ
(
µ = (µt)0≤t≤T

)
= (L(Xµt ))0≤t≤T

• Assume bounded coefficients and E[|X0|
4] < ∞

◦ choose K such that E[|Xµt |
4] ≤ K

⇒ E stable by φ

◦ W2(L(X?,µ
t ),L(X?,µ

s )) ≤ CE
[
|X?,µ

t − X?,µ
s |

2]1/2
≤ C|t − s|1/2
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sup
0≤t≤T

∫
Rd
|x|4dµt(x) ≤ K for some K

• Construct φ{ fix (µt)0≤t≤T in E and solve HJB ◦ optimal
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Conclusion

• Consider continuous µ = (µt)0≤t≤T from [0,T] to P2(Rd)

◦ for any t{ (φ(µ))t in a compact subset of P2(Rd)

◦ [0,T] 3 t 7→ (φ(µ))t is uniformly continuous in µ

◦ by Arzelà-Ascoli⇒ output lives in a compact subset of
E ⊂ C([0,T],P2(Rd)) (and thus of C([0,T],M1(Rd))

• Continuity of φ on E{ stability of the solution of non-degenerate
HJB with respect to a continuous perturbation of the environment

• Refinements to allow for unbounded coefficients

◦ example{ b linear in α, f strictly convex in α, with derivatives
in α at most of linear growth in α

◦ other refinements to treat other types of growth

{ typical instance is linear-quadratic mean field games⇒
HJB has a quadratic solution that may be found (almost) explicitly
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Part III. Solving MFG

c. Uniqueness criterion



Need for monotonicity

• Simple 1d forward backward system

ẋt = −yt

ẏt = 0
yT = g(xT )

◦ finite-dimensional master PDE{
inviscid yt = v(t, xt)
Burgers equation

−∂tv = −v∂xv, v(T , x) = g

◦ well-posed if g↗⇒ ! of characteristics

◦ if not⇒ shocks may emerge in finite time ⇒ may loose !

• Plots of the characteristics
if g(x) = (−1 ∨ x ∧ 1)

0
0

T = 1

0

T = 1
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Lasry Lions monotonicity condition
• Recall following FBSDE result

◦ what is monotonicity condition in the direction of the measure?

• Lasry Lions monotonicity condition

◦ b, σ do not depend on µ

◦ f (x, µ, α) = f0(x, µ) + f1(x, α) (µ and α are separated)

◦ monotonicity property for f0 and g w.r.t. µ∫
Rd

(
f0(x, µ) − f0(x, µ′)

)
d
(
µ − µ′

)
(x) ≥ 0∫

Rd

(
g(x, µ) − g(x, µ′)

)
d
(
µ − µ′

)
(x) ≥ 0

• Example :

h(x, µ) =

∫
Rd

L
(
z, ρ ? µ(z)

)
ρ(x − z)dz

◦ where L is↗ in second variable and ρ is even
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Monotonicity restores uniqueness
• Assume that for any input µ = (µt)0≤t≤T unique optimal control α?,µ

◦ + existence of an MFG for a given initial condition

• Lasry Lions⇒ uniqueness of MFG equilibrium!

◦ if two different equilibria µ and µ′{ α?,µ , α?,µ
′

Jµ
(
α?,µ

)︸   ︷︷   ︸
cost under µ

< Jµ
(
α?,µ

′)
and Jµ

′(
α?,µ

′)︸     ︷︷     ︸
cost under µ′

< Jµ
′(
α?,µ

)

so that
Jµ
′(
α?,µ

)
− Jµ

′(
α?,µ

′)
+ Jµ

(
α?,µ

′)
− Jµ

(
α?,µ

)
> 0

Jµ
′(
α?,µ

)
− Jµ

(
α?,µ

)
−

[
Jµ
′(
α?,µ

′)
− Jµ

(
α?,µ

′)]
> 0

E
[

g(X?,µ
T , µ′T ) − g(X?,µ

T , µT )︸                          ︷︷                          ︸∫
Rd

(
g(x, µ′T ) − g(x, µT )

)
dµT (x)

−
(
g(X?,µ′

T , µ′T ) − g(X?,µ′

T , µT )
)︸                              ︷︷                              ︸∫

Rd

(
g(x, µ′T ) − g(x, µT )

)
dµ′T (x)

+. . .
]
> 0

◦ same for f0 ⇒ LHS must be ≤ 0
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� Recall the form of an Ordinary DE (with values in Rd)

Ẋt = b(t,Xt), or dXt = b(t,Xt)dt,

for a velocity field b with values in Rd, called drift

� call Stochastic DE

dXt = b(t,Xt)dt + σ(t,Xt)dWt,

for a volatility σ with values in Rd×d, and where

 dWt = (dW1
t , · · · , dWd

t )

 dW1
t , · · · , dWd

t are ⊥⊥ and N(0, dt)

 dWt is independent of the past before t



� (Wt)t≥0 B.M. with values in Rd is

Wt =
(
W1

t , · · · ,W
d
t
)

 (W1
t )t≥0, · · · , (Wd

t )t≥0 independent

 W i
t+dt −W i

t of the past before t and N(0, dt) distributed

 plot in d = 2



� Recall Law of Large Numbers

 take sequence (Xn)n≥1 of independent r.v. with values in Rd

 take ϕ : Rd → R bounded continuous

P
(

lim
N→∞

1
N

N∑
n=1

ϕ(Xn) = E
[
ϕ(X1)

])
= 1

� Define the empirical measure µ̄N = 1
N

∑N
k=1 δXk and call µ = L(X1)

P
(

lim
N→∞

∫
Rd
ϕdµ̄N =

∫
Rd
ϕdµ

)
= 1

 take ϕ in countable subset of C0(Rd), set of bounded
continuous functions that tend to 0 at infinity,

P
(
∀ϕ ∈ C0(Rd), lim

N→∞

∫
Rd
ϕdµ̄N =

∫
Rd
ϕdµ

)
= 1

and then P
(
µN ⇒ µ

)
= 1!



� u (classical) solution(
∂tu +

∆xu
2

)
(t, x) + inf

β ∈A

[
b
(
x, µt, β

)
∂xu(t, x) + f

(
x, µt, β

)]
= 0

 H(x, µ, α, z) = b(x, µ, α) · z + f (x, µ, α)

 α?(x, µ, z) = argminα∈AH(x, µ, α, z){ α? = α?(x, µt, ∂xu(t, x))

� (Exercise) take dXt = b(Xt, µt, αt)dt + dWt

 Apply Itô’ s formula to prove that

d
(
u(t,Xt) +

∫ t

0
f (Xs, µs, αs)ds

)
≥

[
H

(
Xt, µt, αt, ∂xu(t,Xt)

)
− inf

β
H

(
Xt, µt, β, ∂xu(t,Xt)

)]
dt + dmt

with (mt)0≤t≤T zero expectation

 take expectation and
∫ T

0 . . . dt and get J(α) ≥ E[u(0,X0)]

optimal feedback is α?(x, µt, ∂xu(t, x))



� Recall H(x, µ, α, z) = b(x, µ, α) · z + f (x, µ, α)

 take b(x, µ, α) = α

 take f (x, µ, α) = f (x, µ) + 1
2 |α|

2

 take A = Rd

� Then, α?(x, µ, z) = −z

 HJB becomes(
∂tu + 1

2∆xu
)
(t, x) − 1

2 |∂xu(t, x)|2 + f
(
x, µt

)
= 0



� Take
dXt = b

(
t,Xt

)
dt + dWt

 find an equation for (µt = L(Xt))0≤t≤T?

� Fokker-Planck

∂tµt = −divx
(
b(t, x)µt

)
+

1
2

∆xµt

 take ϕ smooth test function (with compact support) and expand

E
[
ϕ(Xt)

]
=

∫
Rd
ϕ(x)dµt(x)

 Itô’s formula yields

d
dt
E
[
ϕ(Xt)

]
= E

[
b(t,Xt) · ∂xϕ(Xt) +

1
2

∆xϕ(Xt)
]

that is

d
dt

∫
Rd
ϕ(x)dµt(x) =

∫
Rd

b(t, x) · ∂xϕ(x)dµt(x) +
1
2

∫
Rd

∆xϕ(x)dµt(x)



� Take
dXt = b

(
t,Xt

)
dt + dWt

 find an equation for (µt = L(Xt))0≤t≤T?

� Fokker-Planck

∂tµt = −divx
(
b(t, x)µt

)
+

1
2

∆xµt

 take ϕ smooth test function (with compact support) and expand

E
[
ϕ(Xt)

]
=

∫
Rd
ϕ(x)dµt(x)

 Itô’s formula yields

d
dt
E
[
ϕ(Xt)

]
= E

[
b(t,Xt) · ∂xϕ(Xt) +

1
2

∆xϕ(Xt)
]

that is
d
dt

〈
ϕ, µt

〉
=

〈
ϕ,−divx

(
b(t, ·)µt +

1
2

∆xµt
〉



� Take θ random variable with uniform distribution on {1, · · · ,N}
and, for x, x′ in (Rd)N , consider

X = θx, X′ = θx′

 L(X) =
1
N

N∑
i=1

δxi , L(X′) =
1
N

N∑
i=1

δx′i



� Backward SDE

Yt = G(XT ) +

∫ T

t
F
(
Xs,Ys,Zs

)
ds −

∫ T

t
ZsdWs

 strange to have two unknowns and one equation!

� make it clear with F ≡ 0

 always want Yt not to anticipate on the future

 cannot be Yt = G(XT )

 only way is Yt = E[G(XT ) | Ft]

 Theorem from probability that there exists a unique Z!



� Choose ‖ · ‖ as Kantorovich Rubinstein norm (see Bogachev)

‖µ‖ = |µ(Rd)| + sup
{∫
Rd
`(x)dµ(x), ` 1-Lip, `(0) = 0

}

� Then Kantorovich formula forW1

W1(µ, µ′) = ‖µ − µ′‖



� If p ≥ 1 and Pp(Rd) probability measures with finite p-moments

µ, ν ∈ Pp(Rd), Wp(µ, ν) =

(
inf
π

∫
Rd×Rd

|x − y|pdπ(x, y)
)1/p

,

where π has µ and ν as marginals on Rd × Rd



� First order condition of optimality with noise

dXt = b(Xt, µt, αt)dt + σdWt

 Pontryagin system (Peng)

Xt = X0 +

∫ t

0
b
(
Xs, µs, α

?(Xs, µs,Ys
))

ds

+ σWt

Yt = ∂xg(XT , µT ) +

∫ T

t
∂xH

(
Xs, µs, α

?(Xs, µs,Ys
)
,Ys

)
ds

−

∫ T

t
ZsdWs



� First order condition of optimality with noise

dXt = b(Xt, µt, αt)dt + σdWt

 Pontryagin system (Peng)

Xt = X0 +

∫ t

0
b
(
Xs, µs, α

?(Xs, µs,Ys
))

ds

+ σWt

Yt = ∂xg(XT , µT ) +

∫ T

t
∂xH

(
Xs, µs, α

?(Xs, µs,Ys
)
,Ys

)
ds

−

∫ T

t
ZsdWs



� First order condition of optimality with noise

dXt = b(Xt, µt, αt)dt + σdWt

 Pontryagin system (Peng)

Xt = X0 +

∫ t

0
b
(
Xs,L(Xs), α?

(
Xs,L(Xs),Ys

))
ds

+ σWt

Yt = ∂xg(XT ,L(XT )) +

∫ T

t
∂xH

(
Xs,L(Xs), α?

(
Xs,L(Xs),Ys

)
,Ys

)
ds

−

∫ T

t
ZsdWs



� Summary: Forward-Backward systems may be ill-posed! But:

 Noise restores uniqueness!

 Monotonicity (↔ convexity)restoresuniqueness!



� Hint: Either use monotonicity or interpret the FB system as the
Pontryagin system of a standard optimal control problem with
linear–convex coefficients

 b(t, x, α) = (atx + a′t)x + btαt

 g(x) = 1
2 q(q + q′)x2

 f (t, x, α) = 1
2
[
α2 + mt(mt + m′t)x

2]



� Exercise : What does monotonicity for the MFG mean for the
control problem?

� Hint : Write monotonicity as∫
Rd

[∫
Rd

F(x − y)dm(y) −
∫
Rd

F(x − y)dm′(y)
]
d
(
m − m′)(x) ≥ 0

⇔

∫
Rd

∫
Rd

F(x − y)d
(
m − m′

)
(y)d

(
m − m′)(x) ≥ 0

 second-order term is positive in linearization⇔ convexity!

� Examples :

 F(z) = −|z|2

 F(z) =

∫
Rd

exp(iz · s)dλ(s), where λ is symmetric positive

finite measure
(take λ a Gaussian, take λ a Cauchy, take λ a combination of

two Dirac masses...)



�Make a convex perturbation of µ ∈ P(Rd)

 take ν ∈ P(Rd) and expand

1
2

∫
Rd

∫
Rd

F(x − y)d
(
(1 − ε)µ(x) + εν(x)

)
d
(
(1 − ε)µ(x) + εν(x)

)
= 1

2

∫
Rd

∫
Rd

F(x − y)dµ(x)dµ(y)

+ ε

∫
Rd

∫
Rd

F(x − y)dµ(x)d(ν − µ)(y)

+ ε2 1
2

∫
Rd

∫
Rd

F(x − y)d(ν − µ)(x)d(ν − µ)(y)

 regard ν − µ as direction of linearization
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