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Convex optimization models e pimisaton

Part |
“Nominal” optimization problem:

min fo(X) : f,(X) <0, i=1,...,m Convex optimization
X
fo, fi’'s are convex.
» Includes many problems arising in decision making, statistics.

» Efficient (polynomial-time) algorithms.
» Convex relaxations for non-convex problems.



Uncertainties are a pain!! e pimisaton

Part |
In practice, problem data is uncertain:

» Estimation errors affect problem parameters.

Convex optimization

» Implementation errors affect the decision taken.

Uncertainties often lead to highly unstable solutions, or much
degraded realized performance.

These problems are compounded in problems with multiple decision
periods.



Robust counterpart e pimisaton
Part |
“Nominal” optimization problem:

min f()(X) : f,(X) <0, i=1,...,m Convex optimization
X
Robust counterpart:

min max fo(x,u) : Yuel, fix,u) <0, i=1,....,m
X ueld

» functions fi now depend on a second variable u, the “uncertainty”,
which is constrained to lie in given set U.

» Inherits convexity from nominal. Very tractable in some practically
relevant cases.

» Complexity is high in general, but there are systematic ways to
get relaxations.



Robust chance counterpart e pimisaton
Part |
(Assume for simplicity there are no constraints)

min max Epf(x, u). Gonvex optmizaton
X  pEP

» Uncertainty is now random, obeys distribution p.

» Distribution p is only known to belong to a class P (e.g.,
unimodal, given first and second moments).

» Complexity is high in general, but there are systematic ways to
get relaxations.

» Rich variety of related models, including Value-at-Risk
constraints.

In this lecture: our main goal is to introduce some important concepts
in robust optimization, e.g. robust counterparts, affine recourse,
distributional robustness.



Uncertainty models e pimisaton

Part |
Nominal problem:

minc'x : alx<b, i=1,....m.
X

Robust LP

We assume that a; = &; + pu;, where
» 3's are the nominal coefficients.
» u;’s are the uncertain vectors, with u; € U; but otherwise unknown.
» p > 0is a measure of uncertainty.

Assumption that uncertainties affect each constraint independently is
done without loss of generality.



Robust and Sparse

Robust counterpart Optimization
Part |
Robust counterpart:
min ¢'x : Yu; eu;, (?a,-—i—pu,-)Tx <b, i=1,...,m.
X
Robust LP

Solution may be hard, but becomes easy when:
» U; are polytopic, given by their vertices (“scenarios”);
» U;’s are “simple” sets such as ellipsoids, boxes, LMI sets, etc.
» Complexity governed by the support functions of sets ;.

Robust LP with ellipsoidal uncertainty.



Chance constraints e

. Part |
Simple case

Consider an LP, and assume one of the constraints is a’ x < b, where
x € R" is the decision variable.

Chance Constraints

If ais random, we can often deal with the chance constraint
Prob {aTx < b} >1—¢

easily. For example, if ais Gaussian with mean & and covariance
matrix ', above is equivalent to

a'x + k(e)|F"2x|2 < b,

where «(-) is a known function that is positive when ¢ < 0.5.



More complicated chance constraints e pimisaton
Part |
Often, the random variable enters quadratically in the constraint. This
happens for example when x includes affine recourse, and a depends

linearly on some random variables.

Chance Constraints

We are led to consider
Prob {(u,1)TW(u,1) > o} <e

where W depends affinely on the decision variables. Above is hard,
even in the Gaussian case.



Robust and Sparse

Distributional robustness Optimization
Part |
Consider instead

sup Prob), {(u,1)TW(u, 1) > 0} <e
peP

Chance Constraints

where the sup is taken with respect to all distributions p in a specific
class P, specifying e.g.:

» Moments.

» Symmetry, unimodality.

Fact: when P is the set of distributions having zero mean and unit
covariance, the condition sup,.» Pw. < € is equivalent to the LMl in
M, v:

TTM<ev, M=0, M=vJ+ W,

where J is all zero but a 1 in the bottom-right entry.



Example

Transaction costs In many financial decision problems, the transaction
costs can be modeled with

T(x,u) = [[A(x)u + b(x)]l1,

for appropriate affine A(-), b(-).

Example:
.
Z [Xt11 — Xt
t=1

with decision variable x; an affine function of u.

This leads to consider quantities such as

max E T(x, u)
u~(0,1)

where u ~ (0, /) refers to distributions with zero mean and unit
covariance matrices.

Robust and Sparse
Optimization
Part |

Chance Constraints



A useful result e

Part |
For given m x d matrix A and d-vector b, define

¢ = max E|Au+ b
u~(0,/)
Chance Constraints

Let a; denote the i-th row of A (1 < i < m). Then

<<,
T

(%)

where
m

v=3

i=1

2

Note: 1 is convex in A, b, which allows to minimize it if A, b are affine
in the decision variables.
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. . Robust and S

Basic idea  Optimization
Part |

Nominal LP:

min c’x : Ax < b.
X

Affine Recourse

We assume that A, b are affected by uncertainty in affine fashion. We
assume uncertainty is available to “known by” some decision variables
(e.g., price revealed as time unfolds).

We seek an affinely adjusted robust solution (i.e., a linear feedback).



Robust and Sparse
Exam p I e Optimization
Part |

Nominal LP:
min c’x : Ax < b.
X

Assume that

» Right-hand side b is subject to uncertainty, b(u) = b + Bu with
uecu.

» Decision variable can depend on (parts of) u: x(u) = X + Xu.
Model information on u available to x(-) as X € X.

Affine Recourse

Affinely Adjustable Robust counterpart (AARC):

min max ¢’ x(u) : Yuel, Ax(u) < b(u).
X, Xex ueu

Above is tractable (provided U/ is).



Example
Assume U = [—p, p]”, we obtain the AARC

ATianT)“(—pHcTX|\1 c Ax+ps < b, s> | e/ (AX=B)|s, i=1,...,m.
x,Xe

We recover the “pure” robust counterpart with X = 0.

Robust and Sparse
Optimization
Part |

Affine Recourse



Case with coefficient uncertainty e pimisaton

Part |

Approach can be extended to cases when A, ¢ are also uncertain.

» AARC is usually not tractable.
» Efficient approximations via SDP.

Affine Recourse



Robust and Sparse

A short-term financing problem Optimization
(From [8].) Fart|

Variables :
» Balance on the credit line x; for month i = 1,2,3,4,5.
» Amount y; of commercial paper issued (i = 1,2, 3).

v

Excess funds z; for month i = 1,2,3,4,5.

Example

» 75, the company’s wealth in June.

With these variables we have to meet certain cash-flow requirements
each month.

Decision problem:

Bounds on variables,

maximize 2, subject to { Cash-flow balance equations.



Linear programming formulation R Cpimiaton

Part |

max Zs

s.t. X1+ y1 —z1 =150,
Xo+ Yo — 1.01x; +1.003zy — 2o = 1007
X3+ Y3 — 1.01x2 +1.0032, — z3 = —200,
Xs —1.02y1 — 1.01x3 + 1.00323 — z4 = 200, Example
x5 —1.02y> — 1.01x4 + 1.003z4 — zs = —50,
—1.02y3 — 1.01x5 + 1.003z5 — zs = —300,
0<x<100, y>0, z>0.

The right-hand side contains the liabilities that we must meet.



Robust and Sparse

Matrix notation Optimization

Inequality form Part |

max ¢c'v : Av>b, Cv<d, v>0.
v

Here:
» v =(X,Yy,Z2) is the decision variable. e
» A, b describe the liability constraints, b is the liability vector.

C, d describe the upper bounds on x (x < 100).

» cis a vector such that ¢’ v = z. (Thatis, cis all 0’s except 1 in
the last entry.)

v

Note: we have, without loss of generality, replaced the equalities
Av = b by inequalities (Av > b) (Why is it safe to do so?)



CVX syntax

A short-term financing problem

Robust and Sparse
Optimization
Part |

Assume A, b have been defined in mat 1ab’s workspace:

cvx_begin
variable x
variable y
variable z
maximize (
Ax[x;

OO — ~e s s
PPN

Ol Il

~

Solution: (terminal wealth in red)

Example

month X y z
1 0.0000 0 0.0000
2 22.5813 0 0.0000
3 0.0000 0 351.9442
4 0.0000 | 150.0000 | 0.0000
5 28.9671 | 77.4187 0.0000
6 0 174.7512 | 92.4969



Uncertainty model e pimisaton

Part |
We now assume that the liability vector b is subject to uncertainty.

Specifically: at each time ¢, the liability is

Example

b(t) = b(t)(1 + 0.06u(t) + 0.02u(t — 1))

for some values u(t), u(t — 1) that are only known to be in [—1, 1].
Here b contains the nominal liability values.

» This models relative errors in b(t).
» The liability at time t depends on noise at time ¢, t — 1.
» We set b to be the vector in the previous example.



Robust and Sparse

Uncertainty model Optimization

) Part |
Matrix form ar

Example

The liability vector is now a function of uncertainty:
b(u) = b+ Bu, ||lul|ls <1,
where u € R®, and

006 O 0 0 0 0
0.02 006 O 0 0 0
0 002 006 O 0 0
0 0 002 006 O 0
0 0 0 002 006 O
0 0 0 0 002 0.0

B = diag(b)



Robust counterpart R Cpimsaton

Part |

max c’v

XY,z Convex optimization

st. Vu, ||ufw <1 : Av>b+Bu,

Chance Constraints
X
= >0, x <100 .
= > ne Recourse
"4 y ; . Affine Recourse
z Example
Robust Dynamic
Programming

Motivations
Examples
General Framework

Main re
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Robust counterpart e pimisaton

) . Part |
A single constraint ar

Let us examine a particular constraint (attime t =1,...,6):
a(t)"v > b(t) + B(t) u,
where B(t) is the t-th row of B.

Example

The robust counterpart obtains when insisting that the above remains
true for every value of u permitted by the model (i.e., ||u]| < 1).

The constraint becomes

lulle <1 = a(®)"v > b(t) + B(t) u



Useful faCt Robust and Sparse

Optimization
Part |

Fact: the conditiononz€ RP, 3 € R
Vu, |lule <1 : 2Tu<s,
which is the same as:

B> max z'u, Bxanglo
u:lui| <1, i=1,..,p

is equivalent to
lzllh < B.

Proof: The scalar case (p = 1) is trivial. Then, exploit decoupling:

max u;z.

o
T Ui Juil <1

P
max E uizi =
us gl <1, i=1,.0p i1

i=

Each maximum is attained by u; = sign(z;),i=1,...,p.



Robust counterpart e pimisaton

Equivalent form of a single constraint Part!
In our problem, the cash-flow matching constraint at time t is
Vu, |lulle <1 : a(t) v>b(t)+ B(t) u.
Apply previous result and obtain the equivalent form:
e

a(t)"v = b(t) + [|B(1)ll

Recall B(t) stands for the t-th row of matrix B.



Robust and Sparse

Robust counterpart Optimization

All constraints together Part|

Robust counterpart of cash-flow matching constraints:

Vu, |ullee <1 : Av > b(u).

Example

Equivalent form: )

Av > b+ |B|1,
where |B| is the matrix of absolute values in B, and 1 is the vector of
1’s. (Hence, |B|1 is a vector with the /s-norm of the rows of B in each
entry.)

That is, we simply replace b by its worst-case value b+ |B|1 in the
original model.



Robust counterpart e pimisaton
Part |

Formulation

Original robust counterpart:

max c’v
XY,z

st. Vu, ||ufe <1 : Av>b+Bu,

Example

X
v = y >0, x<100.
z

After our derivations, simply replace b by b + |BJ|1:

max c'v

X,y,Z
Av>b+|B|™1,
X
V= y >0, x<100.
z



Robust counterpart

Results

(Terminal wealth in red)

Robust and Sparse
Optimization
Part |

Nominal solution:
month X y z
1 0.0000 0 0.0000
2 22.0916 0 0.0000 Sah
3 0.0000 0 351.9442
4 0.0000 | 150.0000 | 0.0000
5 29.4665 | 77.9084 0.0000
6 0 174.2567 | 92.4969
Robust solution:
month X y z
1 0.0000 0 0.0001
2 33.5287 0 0.0000
3 0.0000 0 377.0489
4 0.0000 | 159.0000 | 0.0000
5 33.9808 | 75.4714 0.0000
6 0 2249128 | 17.2684




Comments R Cpimiaton
Part |
The results delivered by the robust solution seem substantially worse

(terminal wealth goes from 92.5t0 17.3) .

Example

However the terminal wealth delivered by the robust solution has to be
compared to the one delivered by the nominal policy when
uncertainty is present .

With uncertainty, the nominal policy is actually a complete failure: the
cash-flow requirements are simply not met!



Robust and Sparse

Robust counterpart to example problem Optimization

. Part |
Interpretation

The policy implied by the robust counterpart is quite simple in this
problem.

Example

Simply replace all the nominal values of the liability vector by
their extreme ones, and solve the original problem with these
new (worse) values.

Can we do better?



ReCO urse approach Robust and Sparse

Optimization
Part |

We can do better by exploiting the fact that this problem involves
multiple decision periods, and assuming that the uncertainty is
revealed to us as time goes on.

Example

For example, we may assume that at each time ¢ the values of
(u(1),...,u(t—1)) are available to the decision maker.

This lets us make the decision vectors (strictly causal) functions of u.



Robust and Sparse

Recourse approach Optimization

Linear recourse Part |
We assume that the decision variables are strictly causal linear
functions:
x(u) = x+Xu, y(u)=y+ W, z(u)=z+2u.

where X, Y, Z are a strictly lower-triangular matrices. That way, Example
x(t), y(t), z(t) depend only on (u(1),...,u(t — 1)). Here, the
variables are x,y,z and X,Y,Z.

We can write the vector of variables v = (x, y, z) as a function of u:

X
viuy)=v+W, V=1[Y
V4

where v is a vector, and V is a matrix. (Both are variables, and V is
constrained by the triangular structure of X, Y, Z.)



Robust and Sparse

Recourse approach Optimization

. Part |
Linear recourse

Problem with linear recourse:

max min ¢’ (v+ W)
XY,z U lufleo <1

st X,Y,Z strictly lower-triangular,
Vu, ||uleo <1: A(v+ W) > b+ Bu [—.
v+ W >0, x+ Xu<100.

» Note that we consider the worst-case objective.

» We make sure that the constraints remain valid for every
admissible v, including the sign constraints on the variables
themselves.

» We can apply the same technique as before to get to a tractable
solution . ..



R Cpimiaton
Recourse approach

. Part |
Linear recourse, tractable form

max _ c¢'v—|Vic|
x,y,z2,X,Y,Z
st. Av > b+ |B—AV|"1,
v>|V|1, x+|X]|1 <100,
X, Y, Z stricly lower triangular, Example
X X
v=|y |, V= Y
z Z

Problem is still an LP!

» The presence of V makes it easier to satisfy the cash-flow
constraints.

» But it has a negative impact on the other constraints (bounds on
variables), and the objective.

» With V = 0 we recover the robust solution seen
before—information about the uncertainty can only help.



CVX syntax e pimisaton

Part |

cvx_begin
variables x(5,1); y(3,1); z(6,1);
variable X (5,6) lower_triangular;
variable Y (3,6) lower_triangular;
variable Z(6,6) lower_triangular;
maximize( z(6)—- c’+*sum(abs(z),2) );
Ax[x; y; z] >= bt+sum(abs (Ax[X; Y; Z]-B),2);
x <= 100-sum(abs(X),2);

Example

x >= sum(abs (X),2);

y >= sum(abs(Y),2);

z >= sum(abs(2),2);

diag(X) == 0; diag(Y) == 0; diag(Z) == 0;
cvx_end

» Use lower_triangular to specify lower-triangular variables.

» Further use diag(...) == 0 constraints to specify strictly
lower-triangular structure.



Robust and Sparse
RGSU |tS Optimization

Part |
» Nominal solution: worst-case terminal wealth —oo (infeasible
problem).

» Robust solution: worst-case terminal wealth 17.3.
» Linear recourse solution: worst-case terminal wealth 31.5.

Example



Robt d Si
Summary  Optimization
Part |
» Recourse idea is the same as feedback: we use available

information for “planning to re-plan”.

» Robust optimization with linear recourse allows less conservative
strategies in multi-period problems.

» The problem often reduces to an LP or QP, with substantially
more variables (recourse matrices).

Example

» \ersions exist with chance constraints.



Dynamic programming
» Finite-state, discrete-time Markov decision process.
» Finite-horizon control problem: minimize expected cost.

» a € Adenote actions, s € S states, and ci(s, a) the cost for
action ain state s at time .

Bellman recursion (value iteration):

vi(s) = min ci(s,a) + pi(a) Vi, SES

with p;(a) the transition probabilities at time t under action a.

Robust and Sparse
Optimization
Part |

Robust Dynamic
Programming



Uncertainty on transition matrix

We assume that at each stage , “nature” picks a transition probability
vector p:(a) in a given set P;(a).

Robust counterpart: the robust control problem, with “nature” the
adversary.

Robust Bellman recursion:

vi(s) = m|n ci(s,a)+ max p' v, SES.
pEPi(a)

For a wide variety of sets P:(a), inner problem very easy to solve.

Robust and Sparse
Optimization
Part |

Robust Dynamic
Programming



Entropy uncertainty model

A natural way to model uncertainty in the transition matrices involves
relative entropy bounds

P=<p>0: Zp,log </3, ZPJJ

where 3 > 0 is a measure of uncertainty, and g is the nominal
distribution.

The corresponding inner problem can be solved in O(n) via bisection.

Robust and Sparse
Optimization
Part |

Robust Dynamic
Programming



Example

Robust path planning

Nautical miles

=50,
-100
-150

-200

Origin

3

Stochastic obstacle

Destination

50

0

100 150 200 250 300 350
Nautical miles

i

5 23 2

Relative delay (in %)

10

. U, =0% U,=50% U, =80%

05 1 15 2 25
-8

Nominal
strategy

Conservative
strategy

Robust
strategy

Robust and Sparse
Optimization
Part |

vex optimization

Example

Robust Dynamic
Programming
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Supervised learning problems e pimisaton
Part |
Many supervised learning problems (e.g., classification, regression)
can be written as

min £(Xw)

where L is convex, and X contains the data.

Motivations



Robust and Sparse

Penalty approach Optimization
Part |
Often, optimal value and solutions of optimization problems are
sensitive to data.

A common approach to deal with sensitivity is via penalization, e.g.:

min £(X"w) + |Wx|3 (W = weighting matrix).
X

» How do we choose the penalty? Motvations

» Can we choose it in a way that reflects knowledge about problem
structure, or how uncertainty affects data?

» Does it lead to better solutions from machine learning viewpoint?



Support Vector Machine e pimisaton

Part |

Support Vector Machine (SVM) classification problem:

min > (1 —yiz'w+ b)),
b i=1

» Z .= |z1,...,2Zm] € R™ contains the data points .
» y € {—1,1}7 contain the labels .

» x := (w, b) contains the classifier parameters , allowing to
classify a new point z via the rule

Examples

y =sgn(z’w+ b).



Robustness to data uncertainty e pimisaton
Part |

Assume the data matrix is only partially known, and address the
robust optimization problem:

m
. . : T
T 02 201~ wllart u) b))

where U = [y, ..., un] and U4 C R™ " is a set that describes additive
uncertainty in the data matrix.

Examples



Measurement-wise, spherical uncertainty e pimisaton

Part |
Assume
U={U=[u,...,um] € R™™ : |ui|2 < p},

where p > 0 is given.

Examples

Robust SVM reduces to
m
min >(1 = yi(z w+ b) + pllwe)+.

i=1



Link with classical SVM e

Part |

Classical SVM contains k-norm regularization term:
m
Tjn 21: (1= yi(z/ w + b))+ + Aljwlf3.
1=

where A > 0 is a penalty parameter.

Examples

With spherical uncertainty, robust SVM is similar to classical SVM.

When data is separable, the two models are equivalent . ..



Robust and Sparse

Separable data Opimization
Part |

@ \ @ Examples

Maximally robust classifier for separable data, with spherical
uncertainties around each data point. In this case, the robust
counterpart reduces to the classical maximum-margin classifier
problem.



Interval uncertainty e pimisaton
Part |
Assume

U={UeR™ : V(ij), Ul <p},
where p > 0 is given.

Examples
Robust SVM reduces to

m

min Z = yi(z[w+ b) + pl|wll+)

s

The /i-norm term encourages sparsity, and may not regularize the
solution.



Separable data e pimisaton

Part |

]
(-] 0 E
ey B | 4

Maximally robust classifier for separable data, with box uncertainties
around each data point. This uncertainty model encourages sparsity
of the solution.



Other uncertainty models e pimisaton
Part |
We may generalize the approach to other uncertainty models,

retaining tractability:

» “Measurement-wise” uncertainty models: perturbations affect
each data point independent of each other.

» Other models couple the way uncertainties affect each
measurement; for example we may control the number of errors
across all the measurements.

» Norm-bound models allow for uncertainty of data matrix that is
bounded in matrix norm.

» A whole theory, summarized next, is presented in [1].

Examples



Nominal problem R Cpimiaton
Part |

min £(Z70),
0co
where

> Z.=|z,...,2Zm] € R™ is the data matrix
» L£:R™ — Ris a convex loss function

» © imposes “structure” (eg, sign) constraints on parameter vector
0

General Framework



Loss function: assumptions e pimisaton
Part |

We assume that
L(r) = m(abs(P(r))),

where abs(-) acts componentwise, 7 : RT — R is a convex, monotone
function on the non-negative orthant, and

P(r) = r  ("symmetric case”)
“ | rr ("asymmetric case”)

with r;. the vector with components max(r;,0), i =1,...,m.

General Framework



Loss function: examples
> [,-norm regression
» hinge loss
» Huber, Berhu loss

Robust and Sparse
Optimization
Part |

vex optimization
LP

Chance Constraints

Robt

Affine Recourse
Example
Robust Dynamic
Programming

Motivations
Examples
General Framework

Main re




Robust counterpart e pimisaton

Part |

min max £(Z76).
0€0 Zcz
where Z C R™ " is a set of the form
Z={Z+A : AepD,},

with p > 0 a measure of the size of the uncertainty, and D C R is
given.

General Framework



Generic analysis e pimisaton

Part |
For a given vector 0, we have

max £(270) = max u' 270 — £*(u) + pop(uv’),
Zcz u
where L£* is the conjugate of £, and
¢p(X) := max (X, A)

is the support function of D.

Main results



Robust and Sparse

Assumptions on uncertainty set D Optimization

Part |

Separability condition: there exist two semi-norms ¢, 1 such that

op(uv’) = maxu’ Av = g(u)y(v).

» Does not completely characterize (the support function of) the set
D
» Given ¢, ), we can construct a set D, that obeys condition
» The robust counterpart only depends on ¢, 1.
WLOG, we can replace D by its convex hull. AHE



Examples R Cpimiaton
Part |
» Largest singular value model: D = {A : |A|| < p}, with ¢, ¢
Euclidean norms.
» Any norm-bound model involving an induced norm (¢, ¢ are then
the norms dual to the norms involved).

» Measurement-wise uncertainty models, where each column of
the perturbation matrix is bounded in norm, independently of the
others, correspond to the case with ¢ (v) = ||v/|1.

Main results



Other examples e pimisaton

Part |

Bounded-error model: there are (at most K) errors affecting data

D={A=[Mb,....,.Amdn] €R*™ = |6l <1, i=1,....,m,

m

Z)\i S K7 A S {071}177

i=1
for which ¢(-) = || - ||+, ¥(v) = sum of the K largest magnitudes of the
components of v.

Main results



Examples (follow’d) Robust and Sparse

Optimization
Part |

> The set
D={A=[Ndr,. Andn] € R5™ - 5 € {-1,0,1), 8] < k)
models measurement-wise uncertainty affecting Boolean data
(we can impose d; € {x; — 1, x;} to be more realistic)
In this case, we have ¥(-) = || - ||+ and

¢(u) = [lull1,x := min kflu = wlle + [lwl]s.

Main results
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For a given vector 6, we have
: T f T T
= we(Z'0, : >
min max L(Z'0) I’yl’? Lwe(Z'0,k) : k> (U 0)
where

L(r k) :==max v r— L (V) + rk(v)

v

is the worst-case loss function of the robust problem.

Main results
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The tractability of the robust counterpart is directly linked to our ability
to compute optimal solutions v* for

L(r, k) =max v'r— L*(v) + k()
Dual representation (assume ¢(-) = || - || is a norm):

£(r, k) =max £(r +x8) : [¢]. <1

When ¢ is the Euclidean norm, robust regularization of £ (see [10]).

Main results
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» When ¢(-) = || - ||p, p = 1, o0, problem reduces to simple,
tractable convex problem (assuming nominal problem is).

» For p = 2, problem can be reduced to such a simple form, for the
hinge, l,-norm and Huber loss functions.

Special cases
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In particular, the least-squares problem with lasso penalty

min X6 — yll2 + o]

is the robust counterpart to a least-squares problem with uncertainty
on X, with additive perturbation bounded in the norm

Special cases
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The robust counterpart is based on the worst-case value of the loss
function assuming a bound on the data uncertainty (Z € Z):
min max £(Z76).
0cO Zecz
The approach does not control the degradation of the loss outside the
set Z.

Globalized robustness
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In globalized robust counterpart, we fix a “rate” of degradation of the
loss, which controls the amount of degradation of the loss as the data
matrix Z goes “away from” the set Z.

We seek to minimize 7, such that

VA : L(Z+D)0) <71 +a|Al,

where a > 0 controls the rate of degradation, and || - || is a matrix
norm.

Globalized robustness
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Examples

» For the SVM case, the globalized robust counterpart can be
expressed as:

m
min So(1 = y(& W+ B Ve < o

which is a classical form of SVM.

» For lp,-norm regression with m data points, the globalized robust
counterpart takes the form

mgin ||XT9 — y”p . H(m> P)H9H2 <a Globalized robustness

where k(m, 1) = /m, k(m, 2) = k(M, ) = 1.
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Theory can address problems with “chance constraints”

: T
min r;1€a73< EoL(Z(6) 6)

where § follows distribution p, and P is a class of distributions
» Results are more limited, focused on upper bounds.
» Convex relaxations are available, but more expensive.

» Approach uses Bernstein approximations (Nemirovski & Ben-tal,
2006).

Chance constraints
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bp = min max E[lA(x)0 — b(x)llp

v

Regression variable is § € R”

x € R%is an uncertainty vector that enters affinely in the problem
matrices: [A(x), b(x)] = [Ao, bo] + X_; Xi[Ai, bi].

The distribution of uncertainty vector x is unknown, except for its
mean X and covariance X.

Objective is worst-case (over distributions) expected value of
l,-norm residual (p = 1, 2).

v

v

v

Chance constraints
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(Assume X =0, X = | WLOG)
For p = 2, the problem reduces to least-squares:

q
o5 = min 2; | A6 — bi3
1=!

For p =1, we have (2/7)y1 < ¢1 < 1)1, with

q
Y1 = min ZO | A6 — bi2
1=

Chance constraints
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As a special case, consider the median problem:
q
min Z 10 — x|
1=

Now assume that vector x is random, with mean X and covariance X,
and consider the robust version:

¢1:=min max EZ|0 Xi|

X~ (X%,X)

Chance constraints
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We have (2/7T)’(b1 < ¢)1 < 1/)1 y with

n
Y1 = Z (0 — %)%+ Xi
i—

Amounts to find the minimum distance sum (a very simple SOCP).

Chance constraints



Geometry of robust median problem

std
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0.4
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02

0.1

Nominal vs. robust median

nominal points
std dev.

median
robust median
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