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Inverse problem : a contrario definition

Direct problem Inverse problem
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Example: audio inverse problems

Direct problems

1 instrument synthesis

2 signal mixtures

Inverse problems

1 automatique transcription

2 source separation

3 audio restauration
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Example: MEEG inverse problem

? ⇓?
How to localize neuronal sources from M/EEG
records ?
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Inverse problem: formalization

A( y, x, α, b) = 0
model observations/measures unknown hidden errors

signal coefficients and noise

Explicit relation : y = A(x,α,b)
Output error: y = A(x,α) � b
Additive error : y = A(x,α) + b

Relation between x et α :

{
y = A1(x,α) + b

A2(x,α) = 0

nonlinear model: y = A(x) + b
Linear model : y = Ax � b
Linear model + additive noise: y = Ax + b
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Well posed inverse problem

A problem is well-posed in Hadamard sense [Hadamard 1923] if the
following holds :

1 Existence: there is at least one solution.

2 Uniqueness: the set of solutions converge to a unique solution.

3 Stability: the solution depends continuously on the measurements.

The problem is overdetermined if there are more measurements than
sources

The problem is underdetermined if one looks for more sources than
measurements
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Frameworks

Mathematical framework

y ∈ RM

x ∈ RN

A ∈ RM.N

Optimization framework

x = argminL(y,A, x) + P(x;λ)

1 A convex loss or data term L(y,A, x) measuring the fit between the
observed mixture y and the source signal x given the mixing system
A;

2 A regularization term P modeling the assumptions about the
sources,

3 An hyperparameter λ ∈ R+ governing the balance between the data
term and the regularization term.
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The Loss

Traditional assumption: Gaussian noise

L(y,A, x) =
1

2
‖y − Ax‖2

2

But other possible choices

Impulsive noise:

L(y,A, x) =
1

2
‖y − Ax‖1

Poisson noise:

L(y,A, x) = Ax− y + y ln
( y

Ax

)

Matthieu Kowalski Inverse problems: a sparse synthesis approach. 12 / 50



Introduction: inverse problems An optimization framework Iterative Thresholding Numerical results Conclusion

The Penalty

Goal: Model the prior on the sources.

“Analysis” prior

Models the “physical” assumptions on the sources

Minimum energy : 1
2‖x‖

2
2 [Tikhonov, 77]

Total variation (images) : ‖∇x‖1 [ROF, 92]

Sometimes, we need more flexibility: priors are not always in the
“samples” domain
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Optimization framework with dictionary

1 A Dictionary Φ

2 A convex loss or data term L(y,A,α) measuring the fit between the
observed mixture y and some synthesis coefficients α, such that
x = Φα, given the mixing system A;

3 A regularization term P modeling the assumptions about the
sources, in the synthesis coefficient domain

4 An hyperparameter λ ∈ R+ governing the balance between the data
term and the regularization term.
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The Dictionary

Synthesis point of view

Assume x can be written as

x =
K∑

k=1

αkϕk

= Φα

with
Φ ∈ CN.K , k ≥ N

Examples

Gabor

wavelets

Union of Gabor (hybrid model or Morphological Component
Analysis): x = x1 + x2 = Φ1α1 + Φ2α2

Frames ([Balazs et al., 2013])
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The penalty (returns)

Sparse approximation: key idea
x ∈ RN admits a sparse decomposition inside a dictionnary of waveforms
{ϕk}Kk=1:

x =
∑
k∈Λ

αkϕk

with Λ ⊂ {1, . . . ,K}

Given a (noisy) observation y = Ax + n, the Lasso/Basis Pursuit
Denoising [Tibshirani, 96], [Chen et al. 98] estimate reads:

α̂ = argmin
α

1

2
‖y − AΦα‖2 + λ‖α‖1

and
x̂ = Φα̂
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The penalty (returns)

Structured penalties

Structured sparsity via mixed norm [K,Torrésani 2008], [K, 2009]:

Group-Lasso [Yuan, Lin 2006]

P(α;λ) = λ‖α‖2;1 = λ
∑

g

√∑
m |αg,m|2

Elitist-Lasso [K,Torrésani 2008]

P(α;λ) = λ‖α‖2
1;2 = λ

∑
g

(∑
m |αg,m|

)2

Hi-Lasso [Jenatton et al. 2011], [Sprechmann et al. 2011]

P(α;λ) = λ ((1− ν)‖α‖2;1 + ν‖α‖1)

sub-modular functions etc. [Bach 2012]

α̂1, α̂2 = argmin
α

1

2
‖y − A(Φ1α1 + Φ2α2‖2 + P(α1;λ1) + P(α2;λ2)

and
x̂ = Φ1α̂1 + Φ2α̂2
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Proximity operators

we suppose that Φ is orthogonal. We denote by ỹ = ΦT y

LASSO solution min
α
‖y − Φα‖2

2 + λ‖α‖1

α̂g ,m = arg(ỹg ,m) (|ỹg ,m| − λ)+

G-LASSO solution min
α
‖y − Φα‖2

2 + λ‖α‖2,1

α̂g ,m = ỹg ,m

(
1− λ

‖ỹg‖2

)+

E-LASSO solution min
α
‖y − Φα‖2

2 + λ‖α‖2
1,2

α̂g ,m = arg(ỹg ,m)

(
|ỹg ,m| −

λ

1 + λLg
‖|ỹg‖|

)+
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(Relaxed) ISTA

Let α(0) = 0, L ≥ 1
‖Φ∗Φ‖ , 0 ≤ µ < 1, and tmax ∈ N.

For t = 0 to tmax

α(t+1/2) = γ(t) + Φ∗(y −Φγ(t))/L

α(t+1) = S(α(t+1/2), λ/L)

γt+1 = α(t+1) + µ(t+1)(α(t+1) −α(t))

End For

with S a proximity operator (soft thresholding for `1).

Convergence proved by several authors

[Combettes & Wajs 05] forward-backward (proximity operators);

[Daubechies & al 04] Opial’s fixed point theorem;

[Figuereido & Nowak 03] EM algorithm;

Accelerated version by [Nesterov 07], [Beck & Teboulle 09] (FISTA).
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Limitations

Biased coefficients: large coefficients are shrinked [Gao, Bruce 97]

Lake of flexibility for structures: needs to define an adequate convex
penalty (not always simple)

Could we play directly on the thresholding step ?
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Thresholding rules

Definition [Antoniadis 07]

1 S(.;λ) is an odd function. ( S+(.;λ) is used to denote the S(.;λ)
restricted to R+.)

2 S(.;λ) is a shrinkage rule: 0 ≤ S+(t;λ) ≤ t, ∀t ∈ R+.

3 S+ is nondecreasing on R+, and lim
t→+∞

S(t;λ) = +∞
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Examples

Soft [Donoho, Johnstone 94]

S(x ;λ) = x

(
1− λ

|x |

)+

Hard [Donoho, Johnstone 94]

S(x ;λ) = x1|x|>λ

NonNegativeGarrote (NNGarrote) [Gao 98]

S(x ;λ) = x(1− λ

|x |2
)+

Firm [Gao, Bruce 97]

S(x ;λ1;λ2) =


0 if |x | < λ1

xλ2(1− λ1
|x| )

λ2−λ1 if λ1 ≤ |x | < λ2

x |x | > λ2

SCAD [Antoniadis, Fan 01]

S(x ;λ; a) =


x(1− λ

|x| )
+ if |x | < 2λ

x(a−1− aλ
|x| )

a−2 if 2λ ≤ |x | < aλ

x if |x | > aλ
Matthieu Kowalski Inverse problems: a sparse synthesis approach. 24 / 50
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Examples
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Properties of Thresholding rules

Definition: semi-convex fonction

A function f is said to be semi-convex, iff there exists c such that

x 7→ f (x) +
c

2
‖x‖2

is convex

Proposition

We can associate a semi-convex penalty P(.;λ), with c ≤ 1 to any
thresholding rules. Moreover, 1

1−c is an upper-bound of S′(.;λ).
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Convergence results

Theorem

ISTA converges with any thresholding rules

Relaxed ista converges for 0 ≤ µ < 1− c

Examples

NNGarrote (c = 1/2)

P(x ;λ) = λ2 + asinh

(
|x |
2λ

)
+ λ2 |x |√

x2 + 4λ2 + |x |

SCAD (c = a− 1)

P(x ;λ) =


λx if x ≤ λ
(aλx−x2/2)

a−1 if λ < x ≤ aλ

aλ if x > aλ
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Windowed Group-LASSO

Back to the model y = Φα+ b, with Φ orthonormal. Back to a simple
indexing, and for each index k , we define a neighborhood g(k).

Windowed G-Lasso [MK & BT 09], [K et al. 13]

α̂k = ỹk

1− λ√ ∑
m∈g(k)

|ỹm|2


+

= ỹk

(
1− λ

‖ỹg(k)‖2

)+

with ỹ = Φ∗y

N(k2)
k1

k2

N(k1)

Figure : WG-LASSO. Two overlapping
groups: neighborhood of k1 and k2.

Similar thresholding rules introduced by [Cai & Silvermanss 01] for wavelet
thresholding.
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Neighborhood with latents variables

Can we define the WG-Lasso by using proximity operator ?

thanks to the following strategy

map the original coefficients into a bigger space;

define independent groups over the neighborhood of the coefficients;

apply the (group-lasso) proximity operator;

go back to the original space.

Moreover, can we use the WG-Lasso inside ISTA ?
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Expended operators

Definition : Expanding operator

Let α ∈ CN . Let E : CN → CN×N be an expanded
operator such that

α = (α1, . . . , αN) 7→
(w1

1α1,w
1
2α2, . . . ,w

1
NαN , . . . ,w

N
1 α1, . . . ,w

N
N αN)

with w j
i ≥ 0,

∑
j |w

j
i |2 = 1 and w i

i > 0

proposition

E is isometrical, and then ETE = I.

E
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A left inverse

Definition : a natural left inverse

D : CN×N → CN

z = (z1
1 , . . . , z

1
N , . . . , z

N
1 , . . . , z

N
N ) 7→ x

such that ∀k , xk =
1

wk
k

zkk (1)

DE = I and then DE is a bi-orthogonal (oblique) projection.
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Structured shrinkage and proximity operators

proposition

Let S be the shrinkage operator of the WG-Lasso and Ω = ‖.‖21 the
regularizer of the G-lasso. Let E be the expanded operator as previously
defined and D its left inverse. Then

S(., λ) = D ◦ proxλΩ ◦ E

α̂k = ỹk

1− λ√ ∑
m∈g(k)

|ỹm|2


+

= ỹk

(
1− λ

‖ỹg(k)‖2

)+

Remark

S cannot be a proximity operator (it is even not a nonexpansive operator).
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Neighborhood as a convex prior

social sparsity convex regularizers

Let α ∈ CN and let E be the expanded operator.
cvx windowed group lasso:

Ωwgl(α) =
N∑

k=1

√ ∑
`∈N (k)

w
(k)
` |α`|2

= ‖Eα‖21

cvx windowed elitist lasso:

Ωwel(α) =
N∑

k=1

 ∑
`∈N (k)

w
(k)
` |α`|

2

= ‖Eα‖2
12
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A convex functional for social sparsity

A natural convex functional is (aka group-Lasso with overlaps [Bayram 11])

F (α) =
1

2
‖y −Φα‖2 + λ‖Eα‖21

one can look for

α̂ = argmin
α∈CN

F (α)

= ET argmin
u

1

2
‖y −ΦET z‖2 + λ‖z‖21

s.t EET z = z

Similar functional introduced by [Peyré & Fadili 11].

several approach can be used to minimize F (ISTA + Douglas
Rachford, augmented lagrangian. . . )

But: this penalty acts as a discarding procedure, not a selection.
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G-Lasso with overlaps VS latent-G-Lasso

Instead of

F (α) =
1

2
‖y −Φα‖2 + λ‖Eα‖21

[Jacob & al. 09] propose to minimize

F (α̃) =
1

2
‖y −ΦET α̃‖2 + λ‖α̃‖21

to obtain a selection of active groups.

Curse of dimension in both cases !
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Link between the convex functional and our shrinkages

ISTA with WG-Lasso becomes:

z(k) = ED proxλ
γ ‖.‖∗

((
z̃(k−1)

))
αk = Dzk

where z̃(k−1) = z(k−1) +
E

γ
Φ∗(y −ΦET z(k−1))

It is a proximal descent followed by an oblique projection on Im(E ).

conjecture

ISTA with WG-Lasso converges to a fixed point.

Matthieu Kowalski Inverse problems: a sparse synthesis approach. 37 / 50



Introduction: inverse problems An optimization framework Iterative Thresholding Numerical results Conclusion
Thresholding functions Neighborhood thresholding

Orthogonal social sparsity

An Orthogonal version

z(k) = EET proxλ
γ ‖.‖∗

((
z̃(k−1)

))
where z̃(k−1) = z(k−1) +

E

γ
Φ∗(y −ΦET z(k−1))

orth-WG-Lasso

αk = ỹk
∑
j

1

w j
j

1− λ√ ∑
j′∈N (j)

w
(j)
j′ |ỹk′ |2


+

.

WG-Lasso : α̂k = ỹk

1−
λ√ ∑

m∈g(k)

|ỹm|2


+
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A family of shrinkage operators

α = S(y) is given coordinatewise:

Lasso:

αk = yk

(
1− λ

|yk |

)+

NNGarrote / Empirical Wiener

αk = yk

(
1− λ

|yk |2

)+

Windowed Group Lasso

αk = ỹk

(
1− λ

‖ỹg(k)‖2

)+

Empirical Persistent Wiener [Siedenburg 13]

αk = ỹk

(
1− λ

‖ỹg(k)‖2
2

)+
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Audio Declipping
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Audio inpainting: forward problem [A. Adler, V. Emiya et Al]

yr = Mrx

where

x ∈ RN is the unknown “clean” signal;

yr ∈ RM are the “reliable” sample of the observed signal

Mr ∈ RM×N is the matrix of the reliable support of x

we can also define the missing samples as

ym = Mmx
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Reliable vs Unreliable coeff.

Introducing examples Problem statement Time-dom. framework Algorithms Experiments Conclusions

Problem description and matrix formulation

Unreliable data

Observation y

Missing data to be estimated

Original s (unknown)

Degradation

Mm

Mr

yr = Mry

ym = Mmy

Mm =




00010000000000000
00000001000000000
00000000100000000
00000000000100000
00000000000010000
00000000000001000
00000000000000001




Mr =




10000000000000000
01000000000000000
00100000000000000
00001000000000000
00000100000000000
00000010000000000
00000000010000000
00000000001000000
00000000000000100
00000000000000010




Reliable data

Audio Inpainting - V. Emiya 13
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Audio declipping: (constrained and convex) inverse
problem

For audio declipping, we can add the following constraint

α̂ = argmin
α

1

2
‖yr −MrΦα‖+ λ‖α‖1

s.t. Mm+

Φα > θclip

Mm−Φα < θclip

where Mm+

(resp. Mm−) select the positive (resp. negative) samples.

Problem: cannot be solved “efficiently” with (F)ISTA
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Audio declipping: (convex unconstrained) inverse problem

Let

[θclip − x]2
+ =

∑
k:θclipk >0

(θclipk − xk)2
+ +

∑
k:θclipk <0

(−θclipk + xk)2
+

We consider the following unconstrained convex problem:

α = argmin
α

1

2
‖yr −MrΦα‖2

2 +
1

2
[θclip −MmΦα]2

+ + P(α;λ)

which is under the form

f1(α) + f2(α)

with f1 Lipschitz-differentiable and f2 semi-convex.

We can apply (relaxed)-ISTA directly !
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Numerical results
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Average SNRmiss for 10 speech (left) and music (right) signals over
different clipping levels and operators. Neighborhoods extend 3 and 7
coefficients in time for speech and music signals, respectively.
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Numerical results: zoom on reconstructions
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Declipped music signal using different operators for clip level θclip = 0.2
using the Lasso, WGL, EW, PEW, HT, and OMP operators.
Neighborhood size for WGL and PEW was 7.

Matthieu Kowalski Inverse problems: a sparse synthesis approach. 47 / 50



Introduction: inverse problems An optimization framework Iterative Thresholding Numerical results Conclusion
Audio declipping

Original Vs clipped Vs declipped Signal

0 1 2 3 4 5−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5−1

−0.5

0

0.5

1

Matthieu Kowalski Inverse problems: a sparse synthesis approach. 48 / 50



Introduction: inverse problems An optimization framework Iterative Thresholding Numerical results Conclusion

1 Introduction: inverse problems
Exemples et formalisation
Formalisation

2 An optimization framework

3 Iterative Thresholding
Thresholding functions
Neighborhood thresholding

4 Numerical results
Audio declipping

5 Conclusion

Matthieu Kowalski Inverse problems: a sparse synthesis approach. 49 / 50



Introduction: inverse problems An optimization framework Iterative Thresholding Numerical results Conclusion

Conclusion

Take home messages

Use dictionary to get sparsity

Play on thresholding rules in ISTA

Define some neighborhoods for “flexible” structures

Next. . .

Some practical issues (warm start: how many iterations, λ)

Some theoretical issues (more on convergence)
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