Online-Learning for min-max discrete problems

Beyond COmpetitive Analysis and On-line Learning (BeCOOL)

Project Leader: Evripidis Bampis

Joint work with
Dimitris Christou, Bruno Escoffier and Nguyen Kim Thang

PGMO Days 2020

December 1st, 2020
For $t = 1, 2, \ldots, T$:

1. The player picks any feasible action $x^t \in \mathcal{X}$.
2. The adversary reveals any objective function $f^t \in \mathcal{F}$.
3. The player suffers loss $f^t(x^t)$.

Cost: $\text{loss}(\mathcal{A}) = \sum_{t=1}^{T} f^t(x^t)$

Benchmark: Minimize the regret, defined as:

$$R_T(\mathcal{A}) = |\text{loss}(\mathcal{A}) - \sum_{t=1}^{T} f^t(x^*)|$$

where $x^* = \arg\min_{x \in \mathcal{X}} \sum_{t=1}^{T} f^t(x)$.
For linear objectives, any algorithm for the underlying problem translates to a vanishing-regret algorithm for its On-line Learning variant.

Question: Can similar results be achieved for non-linear objectives?

- e.g. On-line Learning MinMax Vertex cover.
- Action \rightarrow Decide a vertex cover on a static graph.
- Adversary \rightarrow Reveals the weights of the vertices.
- Cost \rightarrow The weight of the "heaviest" vertex on the cover.
What we have done:

1. Hardness results on the regret of any algorithm for the family of non-linear On-line Learning problems, called MinMax problems.

2. Separate the power of FTL-based methods and GD-based methods for On-line Learning in the case of non-linear objectives.

3. Apply the FTL method for an On-line Learning version of the Knapsack Problem.
Thank you!