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Second Approach: Set Reduction

Maintenance activity m must take place during the set of time periods

T O(m) = { t ∈ T (m) |Em ≤ t < Em +Dm}
⋂
{ t ∈ T (m) | Lm ≤ t < Lm +Dm}

and it cannot start before Em or finish later than Lm + Dm:

T S(m) = { t ∈ T (m) |Em ≤ t ≤ Lm + Dm}

Em! Em + Dm!Lm! Lm + Dm!

Appendix 2: Reduction of variables set
Proposition:
For each period t œ T and power plant i œ I, the feasible number of active gen-
erators is contained the set K(i, t) = { k | kmaxit Æ k Æ kminit }, where kmaxit =
Gmax
it ≠ Mmin(i, t) and kminit = max{Gmax

it ≠ Mmax(i, t) , Gmax
it ≠ Oit , G

min
it },

with Mmax(i, t), Mmin(i, t) represeting respectively the maximum and mini-
mum number of maintenance activities in execution during period t at power
plant i.

Proof:
T E(m) = { t œ T (m) |ESm Æ t < ESm +Dm}
T L(m) = { t œ T (m) |LSm Æ t < LSm +Dm}
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3.2 Valid inequalities
From the analysis of the problem structure and its parameters, we derive logical
implications for improving the continuous relaxation of the model. Initially, we
exploit the time windows information with this purpose.
A maintenance task m beginning at the earliest starting time Em and with
duration Dm spans the interval T E(m) = { t œ T (m) |Em Æ t < Em + Dm}.
Likewise, if the activity m starts at the latest starting time Lm, it spans the
interval T L(m) = { t œ T (m) |Lm Æ t < Lm +Dm}.

Let us define the span operator S, which maps two intervalsA = {minA,maxA},
B = {minB ,maxB} into an interval C = {min(minA,minB), max(maxA,maxB)},
i.e., the span between the minimum point and the maximum point of the two
intervals A, B. For this operator we use the notation S(A,B).
The span of T E(m) and T L(m) defines the set of time periods T S(m) when the
activity m can be in execution (Fig. 3). That is,

T S(m) = S(T E(m), T L(m))
= { t œ T (m) |Em Æ Lm +Dm}.

Similarly, the overlap of the intervals

T O(m) = T E(m) fl T L(m)
= { t œ T (m) |Lm Æ Em +Dm}

defines the set of time periods when the activity necessarily will take place (Fig.
3).
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Set Reduction (ctd)

The maintenance activities that

I can be in execution at powerhouse i during time period t is
R̄it = |{m ∈M(i) | t ∈ T S(m) }|

I must be in execution at powerhouse i during time period t is

¯
Rit = |{m ∈M(i) | t ∈ T O(m) }|

Hence
¯
Rit ≤ rit ≤ R̄it

Lemma

The feasible number of active generators k at period t ∈ T and powerhouse
i ∈ I lies in the set

K(i , t) =
{
k ∈ Z |

¯
Kit ≤ k ≤ K̄it

}
,

where
¯
Kit = max{Ḡit − Oit , Ḡit − R̄it} and K̄it = Ḡit −

¯
Rit .

The greater the difference between Ḡit and K̄it , and between
¯
Gi and

¯
Kit , the

greater the reduction in the number of possible values for k.
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Third Approach: Valid Inequalities

The linear system formed by constraints∑
k∈K(i,t)

zitk = 1, rit +
∑

k∈K(i,t)

kzitk = Ḡit , ∀ i ∈ I, t ∈ T

is in general undetermined and has multiple non-integer solutions.
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Valid Inequalities (ctd)

We consider the case when
¯
Rit = 0:

I If rit = 0, then
∑

k∈K(i,t) zitkk = Ḡit , which implies zitk = 1 for k = Ḡit .
Hence, ∑

k ∈K(i,t) \ Ḡit

zitk ≤ rit ,∀ i ∈ I, t ∈ T . (1)

I If rit ≥ 1, then zitk = 0 for k = Ḡit .
Expressing rit using the ymt variables, this is equivalent to∑

t′ ∈{T (m) | (t−Dm+1)≤t′ ≤ t}

ymt′ + zitk ≤ 1, (2)

for k = Ḡit , ∀ i ∈ I, m ∈M(i), t ∈ T .
These are facet-defining inequalities.
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Valid Inequalities (ctd)

These last two sets of constraints will suffice to obtain integrality of a subset of
binary variables zitk in the linear relaxation when

I K̄it = Ḡit , and

I the number of degrees of freedom of the original linear system∑
k∈K(i,t)

zitk = 1, rit +
∑

k∈K(i,t)

kzitk = Ḡit , ∀ i ∈ I, t ∈ T

is sufficiently small.

The precise statement and its proof are in the paper.
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Computational Experiments

I We evaluated the 8 formulations obtained starting from the basic model
and including/excluding each of the three approaches

I We conducted two sets of experiments to determine the best combination:

1. Solve smaller instances and analyze the computation times to select a
subset of formulations.

2. Evaluate this subset on larger instances.
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Test System

Our instances were adapted from a cascade 4-powerhouse system with 3100
MW generation capacity in the Lac Saint-Jean region in Quebec, Canada:

Powerhouse System type # generators Inst. capacity (MW)

1 Reservoir 5 205
2 Run of the river 5 210
3 Reservoir 12 402
4 Run of the river 17 1587

Total 39 2404

For each powerhouse, we approximated the hydropower production function
with 30 linear inequality constraints.
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Test Instances – All Formulations

I For the first set of experiments, we used two levels for each of:
I Number of maintenance tasks (8, 10)
I Number of time periods (20, 25)
I Time window length (5, 8)
I Maximum number of outages in each powerhouse (2, 3)
I Average duration of maintenance tasks (4, 5).

I For each of the 25 = 32 combinations, we created two maintenance
datasets, for a total of 64 test instances.

I The formulations have up to 456 binary variables, 775 continuous variables
and 12485 constraints.
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Results – All Formulations

Formulation
Tightening approaches Norm. log CPU time

Set Valid Extended Average St. dev.
reduc. ineq. formul. z̄b σz

b

1 0 0 0 1.469 0.35
2 0 0 1 -0.849 0.40
3 0 1 0 0.790 0.38
4 0 1 1 -0.685 0.33
5 1 0 0 0.421 0.50
6 1 0 1 -0.880 0.34
7 1 1 0 0.511 0.39
8 1 1 1 -0.776 0.42

where we used normalized log CPU times

zjb = (tjb − µt
j )/σ

t
j ,

where tjb is the log CPU time to solve instance j ∈ J with formulation b ∈ B.
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Boxplot – All Formulations

Overall, the four formulations 2, 4, 6, and 8 give the best results:
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Performance Profile

Consider the performance profile of the cumulative relative frequency ρb(τ)
with which a formulation solves instances of the problem within a factor τ of
the best possible value of log2(rjb), where

rjb = tjb/min
b∈ B

tjb,

and

ρb(τ) =
1

nj
size{j ∈ J : log2(rjb) ≤ τ}.
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Performance Profile – All Formulations
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I Formulation 6 is a clear winner for τ ≤ 0.8.

I In fewer than 10% of the instances, models 2 and 8 are competitive.
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Test Instances – Best Formulations

I We now focus on formulations 2, 6 and 8.

I Our focus is on the optimality gaps that they can achieve for large
instances.

I We used 16 instances with more maintenance tasks than before:
I Number of maintenance tasks (15, 20)
I Number of time periods (25)
I Time window length (5, 8)
I Maximum number of outages in each powerhouse (2)
I Average duration of maintenance tasks (4, 5).

I For each of the 23 = 8 combinations, we created two datasets, for a total
of 16 test instances.
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Optimality Gaps – Best Formulations

Formulation

CPU time
20,000 s

CPU time
1,000 s

Mean St. dev. Mean St. Dev

2 0.0144 0.0069 0.0295 0.0235
6 0.0144 0.0071 0.0229 0.0076
8 0.0151 0.0073 0.0273 0.0222

I All three reached average optimality gaps below 3 % within 1,000 s.

I After 20,000 s, the average optimality gaps are all close to 1.5%.

I Formulation 6 had the best overall performance after 1,000 s, and
formulations 2 and 6 had similar average performance after 20,000 s.
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Summary and Current Research

I Hydropower maintenance scheduling is a difficult problem that has
received limited attention in the literature.

I We propose a mixed-integer linear optimization approach that can achieve
small optimality gaps for realistic instances, and is likely suitable for
practical application.

I Current research:
I Exploit the structure to develop a decomposition approach to solve more

complex, real-size instances.
I Consider uncertainty of water inflows.
I Understand the impact of the linearization of the hydropower generation

function (PGMO project with C. d’Ambrosio & W. van Ackooij).

You are welcome to contact me or to visit my group’s website:

Optimization for Smart Grids (OSG) • http://osg.polymtl.ca/

Thank you for your attention.

http://osg.polymtl.ca/
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