Sharp rates of convergence of empirical measures in Wasserstein distance

Francis Bach

INRIA - Ecole Normale Supérieure

Joint work with Jonathan Weed (MIT)

PGMO days, November 2017
Wasserstein distances between distributions

- Comparing probability measures supported on a metric space

Statistical Models

Bags of features

Brain Activation Maps

Empirical Measures, i.e. data

Color Histograms

(courtesy of Marco Cuturi)
Wasserstein distances between distributions

- Comparing probability measures supported on a metric space

- Low-dimensional
 - Images, signals
 - See, e.g., Rubner et al. (2000); Solomon et al. (2015); Sandler and Lindenbaum (2011)

- High-dimensional
 - Text (see, e.g., Kusner et al., 2015; Zhang et al., 2016)
 - Statistical models (see, e.g., Genevay et al., 2017)
 - Empirical measures

- Does it make sense to compute Wasserstein distances from samples in high dimension?
\[W_p(\mu, \nu) := \inf_{\gamma \in \mathcal{C}(\mu, \nu)} \left(\int D(x, y)^p d\gamma(x, y) \right)^{1/p} \]

- **Wasserstein distance** of order \(p \in [1, \infty) \) between \(\mu \) and \(\nu \) on a metric space \((X, D)\)
 - \(\mathcal{C}(\mu, \nu) = \textit{couplings} \) \(\gamma \) of \(\mu \) and \(\nu \) = distributions on \(X \times X \) whose first and second marginals agree with \(\mu \) and \(\nu \)
 - Metric on probability measures on \(X \) (see Santambrogio, 2015)
$W_p(\mu, \nu) := \inf_{\gamma \in \mathcal{C}(\mu, \nu)} \left(\int D(x, y)^p d\gamma(x, y) \right)^{1/p}$

- **Wasserstein distance** of order $p \in [1, \infty)$ between μ and ν on a metric space (X, D)
 - $\mathcal{C}(\mu, \nu) = couplings \ \gamma$ of μ and $\nu =$ distributions on $X \times X$ whose first and second marginals agree with μ and ν
 - Metric on probability measures on X (see Santambrogio, 2015)

- **Estimation from samples**
 - $\hat{\mu}_n, \hat{\nu}_n$ empirical distribution obtained from n i.i.d. samples of μ, ν

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} \delta(x_i)$$
\[
W_p(\mu, \nu) := \inf_{\gamma \in \mathcal{C}(\mu, \nu)} \left(\int D(x, y)^p d\gamma(x, y) \right)^{1/p}
\]

- **Wasserstein distance** of order \(p \in [1, \infty) \) between \(\mu \) and \(\nu \) on a metric space \((X, D)\)
 - \(\mathcal{C}(\mu, \nu) = couplings \ \gamma \) of \(\mu \) and \(\nu \) = distributions on \(X \times X \) whose first and second marginals agree with \(\mu \) and \(\nu \)
 - Metric on probability measures on \(X \) (see Santambrogio, 2015)

- **Estimation from samples**
 - \(\hat{\mu}_n, \hat{\nu}_n \) empirical distribution obtained from \(n \) i.i.d. samples of \(\mu, \nu \)

\[
\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^{n} \delta(x_i)
\]

- Approximation: \(|W_p(\mu, \nu) - W_p(\hat{\mu}_n, \hat{\nu}_n)| \leq W_p(\mu, \hat{\mu}_n) + W_p(\nu, \hat{\nu}_n) \)
Known properties of $W(\mu, \hat{\mu}_n)$

- **Convergence** for any $p \in [1, \infty)$: $W_p(\mu, \hat{\mu}_n) \to 0 \mu$-a.s.

 - For X compact, separable and μ any Borel measure (Villani, 2008)
Known properties of $W(\mu, \hat{\mu}_n)$

- **Convergence** for any $p \in [1, \infty)$: $W_p(\mu, \hat{\mu}_n) \to 0 \text{ } \mu\text{-a.s.}$
 - For X compact, separable and μ any Borel measure (Villani, 2008)

- **Rates of approximation by distributions of discrete support**
 - Information theory (Cover and Thomas, 2012)
 - Machine learning (Cañas and Rosasco, 2012)
Known properties of $W(\mu, \hat{\mu}_n)$

- **Convergence** for any $p \in [1, \infty)$: $W_p(\mu, \hat{\mu}_n) \to 0$ μ-a.s.
 - For X compact, separable and μ any Borel measure (Villani, 2008)

- **Rates of approximation by distributions of discrete support**
 - Information theory (Cover and Thomas, 2012)
 - Machine learning (Cañas and Rosasco, 2012)

- **Curse of dimensionality** (Dudley, 1968)
 - μ absolutely continuous w.r.t. the Lebesgue measure on \mathbb{R}^d:
 - $\mathbb{E}[W_1(\mu, \hat{\mu}_n)] \gtrsim n^{-1/d}$
 - Lower bound asymptotically tight when $d > 2$
 - Sharper results (see, e.g., Dobric and Yukich, 1995)
Sharp asymptotic and finite-sample rates (Weed and Bach, 2017)

- Beyond measures with densities?
 - Adaptivity to low-dimensional structures
Sharp asymptotic and finite-sample rates
(Weed and Bach, 2017)

• Beyond measures with densities?
 – Adaptivity to low-dimensional structures

• Sharper finite-sample (i.e., non-asymptotic) rates?
 – Multi-scale behavior
Sharp asymptotic and finite-sample rates
(Weed and Bach, 2017)

- Beyond measures with densities?
 - Adaptivity to low-dimensional structures

- Sharper finite-sample (i.e., non-asymptotic) rates?
 - Multi-scale behavior

- Unified theoretical framework and explicit constants for all p

- Analysis of $\mathbb{E}[W_p(\mu, \hat{\mu}_n)] + \text{new concentration inequality}$
Assumptions

- **Basic assumptions**
 - The metric space X is Polish, and all measures are Borel
 - $\text{diam}(X) \leq 1$

- **Dyadic partition assumption** with parameter $\delta < 1$ (David, 1988)
 - Sequence $\{Q^k\}_{1 \leq k \leq k^*}$ with $Q^k \subseteq \mathcal{B}(X)$ such that:
 - (a) the sets in Q^k form a partition of X and have diameters $\leq \delta^k$
 - (b) the $(k + 1)$th partition is a refinement of the kth partition
 - Main example: $X = [0, 1]^d$ with the ℓ_∞ metric
Assumptions

• Basic assumptions
 – The metric space X is Polish, and all measures are Borel
 – $\text{diam}(X) \leq 1$

• Dyadic partition assumption with parameter $\delta < 1$ (David, 1988)
 – Sequence $\{Q^k\}_{1 \leq k \leq k^*}$ with $Q^k \subseteq \mathcal{B}(X)$ such that:
 (a) the sets in Q^k form a partition of X and have diameters $\leq \delta^k$
 (b) the $(k + 1)$th partition is a refinement of the kth partition
 – Main example: $X = [0, 1]^d$ with the ℓ_∞ metric

• Alternative definitions
 – $W_p(\mu, \nu) = \inf_{\gamma \in C(\mu, \nu)} \left(\int D(x, y)^p d\gamma(x, y) \right)^{1/p}$
 – $W_1(\mu, \nu) = \sup_{f \in \text{Lip}(X)} \left| \int f d\mu - \int f d\nu \right|$ where the supremum is taken over all 1-Lipschitz functions on X
Related work

• Inherent dimension of the measure on any metric space
 – Dudley (1968): $O(n^{-1/d})$ rate with covering numbers of the support of μ, using Lipschitz-function representation (for $p = 1$)
 – Boissard and Le Gouic (2014): extension to $p > 1$, not tight

• Explicit couplings on \mathbb{R}^d
 – Tight for measures with densities
 – Fournier and Guillin (2015); Dereich et al. (2013)

• Tail bounds
 – Direct (Boissard, 2011; Bolley, Guillin, and Villani, 2007)
 – Indirect (Boissard and Le Gouic, 2014)
Describing low-dimensional structures

- Many possible notions of dimensions (Hausdorff, Minkowski, etc.)
 - \(\varepsilon\)-covering number of \(S \subseteq X\): \(N_\varepsilon(S) = \text{minimum } m \text{ such that there exists } m \text{ closed balls } B_1, \ldots, B_m \text{ of diameter } \varepsilon \text{ such that } S \subseteq \bigcup_{1 \leq i \leq m} B_i\)
Describing low-dimensional structures

- Many possible notions of dimensions (Hausdorff, Minkowski, etc.)

 - \(\varepsilon \)-covering number of \(S \subseteq X \): \(N_\varepsilon(S) \) = minimum \(m \) such that there exists \(m \) closed balls \(B_1, \ldots, B_m \) of diameter \(\varepsilon \) such that \(S \subseteq \bigcup_{1 \leq i \leq m} B_i \)

 - \(\varepsilon \)-dimension of \(S \) equal to \(d_\varepsilon(S) := \frac{\log N_\varepsilon(S)}{\log(1/\varepsilon)} \)

 - Minkowski’s dimension \(\dim_M(S) := \limsup_{\varepsilon \to 0} d_\varepsilon(S) \)

\[
N_\varepsilon(S) \approx C \varepsilon^{-d}
\]
Describing low-dimensional structures

- Many possible notions of dimensions (Hausdorff, Minkowski, etc.)
 - \(\varepsilon \)-covering number of \(S \subseteq X \):
 \[N_\varepsilon(S) = \text{minimum } m \text{ such that there exists } m \text{ closed balls } B_1, \ldots, B_m \text{ of diameter } \varepsilon \text{ such that } S \subseteq \bigcup_{1 \leq i \leq m} B_i \]
 - \(\varepsilon \)-dimension of \(S \) equal to
 \[d_\varepsilon(S) := \frac{\log N_\varepsilon(S)}{\log(1/\varepsilon)} \]
 - Minkowski’s dimension
 \[\dim_M(S) := \limsup_{\varepsilon \to 0} d_\varepsilon(S) \]

- Regular sets of dimension \(d \) (Graf and Luschgy, 2007)
 - Nonempty, compact convex sets in dimension \(d \)
 - Relative boundaries of nonempty, compact convex sets of dimension \(d + 1 \)
 - Compact \(d \)-dimensional differentiable manifolds
 - Self-similar sets with similarity dimension \(d \)
Theorem: Let $p \in [1, \infty)$. If $s > d_p^*(\mu)$, then

$$\mathbb{E}[W_p(\mu, \hat{\mu}_n)] \lesssim n^{-1/s}$$

If $t < d_*(\mu)$, then

$$W_p(\mu, \hat{\mu}_n) \gtrsim n^{-1/t}$$

- Extended notions of dimensions $d_p^*(\mu)$ and $d_*(\mu)$, equal to $\dim_M(\text{supp}(\mu))$ for regular supports
- Refinements based on covering all but a low-mass set, needed for sharpest bound valid for all p
- Precise results with explicit constants
- NB: lower bound holds for any discrete measure on n points
Finite-sample bounds and multiscale behavior

- Single dimension not enough to characterize behavior
Finite-sample bounds and multiscale behavior

- Single dimension not enough to characterize behavior
Finite-sample bounds and multiscale behavior

- Single dimension not enough to characterize behavior

- Previous result

 \[\eta_n = W_p(\mu, \hat{\mu}_n) \approx n^{-1/d} = \exp\left(-\frac{\log n}{d}\right) \]

 \[\eta_n = W_p(\mu, \hat{\mu}_n) \approx n^{-1/d} = \lim_{\varepsilon \to 0} \exp\left(-\log\left(\frac{1}{\varepsilon}\right)\frac{\log n}{\log N_\varepsilon(X)}\right) \]

 - Choosing \(\varepsilon \) such that \(n \approx N_\varepsilon(X) \) leads to \(\eta_n = \varepsilon \)
Finite-sample bounds and multiscale behavior

- Single dimension not enough to characterize behavior

- Previous result
 \[\eta_n = W_p(\mu, \hat{\mu}_n) \approx n^{-1/d} = \exp\left(-\frac{\log n}{d}\right) \]
 \[\eta_n = W_p(\mu, \hat{\mu}_n) \approx n^{-1/d} = \lim_{\epsilon \to 0} \exp\left(-\frac{\log(1/\epsilon) \log n}{\log N_{\epsilon}(X)}\right) \]
 - Choosing \(\epsilon \) such that \(n \approx N_{\epsilon}(X) \) leads to \(\eta_n = \epsilon \)

- “Proposition”: for \(p \in [1, \infty) \), let \(d_n = \frac{\log N_{\epsilon_n}(X)}{\log(1/\epsilon_n)} \), with \(\epsilon_n \) so that \(N_{\epsilon_n}(X) \approx n \). If \(d_n > 2p \), then
 \[\mathbb{E}[W_p(\mu, \hat{\mu}_n)] \lesssim n^{-1/d_n} \]

- “Proposition”: All reasonable sequences \(d_n \) can be achieved by a certain density
Clusterable distributions

• **Definition**: A distribution μ is (m, Δ)-clusterable if $\text{supp}(\mu)$ lies in the union of m balls of radius at most Δ.
Clusterable distributions

- **Definition**: A distribution μ is (m, Δ)-clusterable if $\text{supp}(\mu)$ lies in the union of m balls of radius at most Δ.

- **Proposition**: If μ is (m, Δ) clusterable, then for all $n \leq m(2\Delta)^{-2p}$,

$$\mathbb{E}[W_p^p(\mu, \hat{\mu}_n)] \lesssim \sqrt{\frac{m}{n}}$$

- Usual bound still holds $\mathbb{E}[W_p^p(\mu, \hat{\mu}_n)] \lesssim n^{-p/d}$ for all n

- **Extension to approximately low-dimensional sets**

 - Initial convergence at the rate of the low-dimensional set
Concentration

- **Previous work**: Bolley et al. (2007); Boissard (2011) obtain tail bounds of the form

\[\mathbb{P}[W_p^p(\mu, \hat{\mu}_n) \geq t] \leq \psi_n(t) \]

where \(\psi_n(t) \) has sub-Gaussian subgaussian decay, with unclear dependence on ambient dimension

- Two-step approach by Boissard and Le Gouic (2014) with different tools
Concentration

- **Previous work**: Bolley et al. (2007); Boissard (2011) obtain tail bounds of the form
 \[
 \mathbb{P}\left[W_p^p(\mu, \hat{\mu}_n) \geq t \right] \leq \psi_n(t)
 \]
 where \(\psi_n(t) \) has sub-Gaussian subgaussian decay, with unclear dependence on ambient dimension

 - Two-step approach by Boissard and Le Gouic (2014) with different tools

- **Simple new result**: For all \(n \geq 0 \) and \(0 \leq p < \infty \),
 \[
 \mathbb{P}\left[W_p^p(\mu, \hat{\mu}_n) \geq \mathbb{E} W_p^p(\mu, \hat{\mu}_n) + t \right] \leq \exp \left(-2nt^2 \right)
 \]
 - Concentration phenomenon
“Applications”

- Quadrature
 - From the representation $W_1(\mu, \nu) = \sup_{f \in \text{Lip}(X)} \left| \int f \, d\mu - \int f \, d\nu \right|:
 \[\mathbb{E} \sup_{f \in \text{Lip}(X)} \left| \int f(x) \, d\mu(x) - \frac{1}{n} \sum_{i=1}^{n} f(X_i) \right| \lesssim n^{-1/d} \]
“Applications”

- **Quadrature**
 - From the representation $W_1(\mu, \nu) = \sup_{f \in \text{Lip}(X)} \left| \int f \, d\mu - \int f \, d\nu \right|:

 $$
 \mathbb{E} \sup_{f \in \text{Lip}(X)} \left| \int f(x) \, d\mu(x) - \frac{1}{n} \sum_{i=1}^{n} f(X_i) \right| \lesssim n^{-1/d}
 $$

- **k-means clustering** (Cañas and Rosasco, 2012)
 - Approximation of distributions by finitely supported distributions
 - Equivalence to approximation with W_2
 - Consequence: approximation by empirical measure asymptotically optimal with explicit bounds for regular supports
Conclusion and Future Work

• Summary
 – Sharper / explicit rates for the convergence of $W_p(\hat{\mu}_n, \mu)$
 – Both in asymptotic and finite-sample settings
 – Adaptivity to low-dimensional structures, otherwise exponentially slow convergence
Conclusion and Future Work

• **Summary**
 - Sharper / explicit rates for the convergence of $W_p(\hat{\mu}_n, \mu)$
 - Both in asymptotic and finite-sample settings
 - Adaptivity to low-dimensional structures, otherwise exponentially slow convergence

• **Extensions**
 - Wasserstein distance with entropic penalty (Cuturi, 2013; Solomon et al., 2015; Carlier et al., 2017; Rolet et al., 2016) with better rates?
 - Link with stochastic optimization (Genevay, Cuturi, Peyré, and Bach, 2016)
 - Importance sampling
References

