Energy Management Systems and Demand Response

W. van Ackooij, A. P. Chorobura, C. Sagastizábal, H. Zidani

PGMO Days 2017

November 14, 2017

Goals

- For a toy power mix problem, to compare the pros and cons of implementing a demand-response mechanism by considering:
 - a) Load-shaving constraints
 - b) Energy-management system depending on a battery

・ 何 ト ・ ヨ ト ・ ヨ ト

Goals

- For a toy power mix problem, to compare the pros and cons of implementing a demand-response mechanism by considering:
 - a) Load-shaving constraints
 - b) Energy-management system depending on a battery
- Energy problems often consider cost minimization or revenue maximization. Another important concern refers to the environmental impact in terms of carbon emissions

Goals

- For a toy power mix problem, to compare the pros and cons of implementing a demand-response mechanism by considering:
 - a) Load-shaving constraints
 - b) Energy-management system depending on a battery
- Energy problems often consider cost minimization or revenue maximization. Another important concern refers to the environmental impact in terms of carbon emissions
- The inclusion of a third objective, aiming at maximizing the battery life, could also be important to take into account .

MATHEMATICAL FORMULATION

3

Image: A mathematical states of the state

Mathematical Formulation

- N utilities K_j and T time steps
- Cost c_j of the energy generated by utility K_j
- CO_2 emission E_j from utility K_j
- g_i^t power generated by utility K_j at time t
- Technological constraints for generated power g_i^t in G_i^t (affine set)
- Customers' demand d^t at time t

minimize
$$\begin{pmatrix} \sum_{j=1}^{N} \sum_{t=1}^{T} c_j g_j^t, \sum_{j=1}^{N} \sum_{t=1}^{T} E_j g_j^t \end{pmatrix}$$
subject to $g_j^t \in G_j^t, j = 1, \dots, N, t = 1, \dots, T$
$$\sum_{j=1}^{N} g_j^t = d^t, t = 1, \dots, T$$

Load-shaving

• The load-shaving constraint shifts in time a portion of the energy consumption (in exchange of some compensation, such as a preferential fee).

Load-shaving

- The load-shaving constraint shifts in time a portion of the energy consumption (in exchange of some compensation, such as a preferential fee).
- Shifting consumption away from the peak hours reduces generation costs and keeps the electrical network less congested.

Load-shaving

- The load-shaving constraint shifts in time a portion of the energy consumption (in exchange of some compensation, such as a preferential fee).
- Shifting consumption away from the peak hours reduces generation costs and keeps the electrical network less congested.

- x^t is the displaced energy at time t
- v^t is the maximum power that can be displaced at each period
- γ is a bound for the power that can be shifted along the planning horizon

Energy Management System

Along the lines of

 B. Heymann, P. Martinon, F. Silva, F. Lanas, G. Jiménez, e J.F. Bonnans. Continuous Optimal Control Approaches to Microgrid Energy Management. https://hal.inria.fr/hal-01129393, 2015.

Energy Management System

Along the lines of

 B. Heymann, P. Martinon, F. Silva, F. Lanas, G. Jiménez, e J.F. Bonnans. Continuous Optimal Control Approaches to Microgrid Energy Management. https://hal.inria.fr/hal-01129393, 2015.

The battery can store energy for later use, but has a limited capacity and power.

Energy Management System

Variables

- y^t: state of charge of the battery at time t
- P_I^t and P_O^t : input and output power of the battery at time t

Parameters

- Q_B : maximum capacity of the battery
- $\rho_I, \ \rho_O \in [0,1]$: efficiency ratios for the charge and discharge processes
- y^{min} and y^{max}: minimum and maximum of the state of charge of the battery
- P_{I}^{max} and P_{Q}^{max} : maximum input and output power of the battery

Energy Management System Constraints

$$y^{t+1} - y^{t} = \frac{1}{Q_{B}} \left(P_{I}^{t} \rho_{I} - \frac{P_{O}^{t}}{\rho_{O}} \right)$$

$$\begin{cases} P_{I}^{t} \in [0, P_{I}^{max}] & \text{if } y^{t} < 0.9 \\ P_{I}^{t} \leq 100 P_{I}^{max} (y^{t} - 1)^{2} & \text{otherwise} \end{cases}$$

$$P_{O}^{t} \in [0, P_{O}^{max}], \quad y^{1} = y^{T}$$

$$\sum_{j=1}^{N} g_{j}^{t} + P_{O}^{t} - P_{I}^{t} = d^{t}$$

$$P_{O}^{t} = -\min \left\{ 0, \sum_{j=1}^{N} g_{j}^{t} - d^{t} \right\}$$

$$P_{I}^{t} = \max \left\{ 0, \sum_{j=1}^{N} g_{j}^{t} - d^{t} \right\}$$

for t = 1, ..., T,

(PGMO)

Image: A mathematical states and a mathem

MULTI-OBJECTIVE OPTIMIZATION

3

• • • • • • • •

Multi-objective problem (MOP)

$$\begin{array}{ll} \text{minimize} & f(x) = (f_1(x), \dots, f_s(x)) \\ \text{suject to} & x \in Q \end{array}$$

• $x^* \in Q$ is a **Pareto solution** if there exists no $x \in Q$ such that $f(x) \neq f(x^*)$ and

$$f_i(x) \leq f_i(x^*)$$
, for all $i = 1, \cdots, s$.

• $x^* \in Q$ is a weak Pareto solution if there exists no $x \in Q$ such that

 $f_i(x) < f_i(x^*)$, for all $i = 1, \cdots, s$.

- Set of Pareto and weak Pareto solutions: P and P_w
- Pareto and weak Pareto front:

$$\mathcal{F} = \{f(x) \mid x \in P\}, \qquad \mathcal{F}_w = \{f(x) \mid x \in P_w\}$$

(PGMO)

(日) (周) (三) (三)

Example: Pareto and weak Pareto Front

3

Image: A matrix

Multi-objective programming solution method

• C.Y. Kaya and H. Maurer. *A Numerical Method for Nonconvex Multi-Objective Optimal Control Problems.* Comput Optim Appl, 57: 685-702, 2014.

Single objective problem P_i Minimize $f_i(x)$ suject to: $x \in Q$

• Denote x_i^* a solution of (P_i) and $f_i^* = f_i(x_i^*)$.

• Define a *utopian objective vector* β^*

$$\beta_i^* = f_i^* - \varepsilon_i$$

where $\varepsilon_i > 0$ for all $i = 1, \cdots, s$.

Scalarization

Weighted Chebyshev problem (MOP_w) minimize $\max_{i=1,...,s} w_i(f_i(x) - \beta_i^*)$ subject to $x \in Q$

where
$$w_i \geq 0$$
, $i = 1, \ldots, s$ and $\sum_{i=1}^s w_i = 1$.

Theorem [J. Jahn, Corollary 5.35]

A vector $x^* \in Q$ is a weak Pareto minimum of (MOP) if, and only if, $x^* \in Q$ is a solution of (MOP_w) for some $w_1, \dots, w_s > 0$.

イロト イポト イヨト イヨト 二日

Multi-objective programming solution method

Problem (MOP_w) is a non-smooth optimization problem, because of the max operator in the objective. So it is re-formulated as:

Smooth form of (MOP _w)	
minimize	α
subject to	$\alpha \ge 0$ $x \in Q$ $w_1(f_1(x) - \beta_1^*) \le \alpha,$ \vdots $w_s(f_s(x) - \beta_s^*) \le \alpha$

Algorithm by Kaya and Maurer, Comput Optim Appl, 2014

Data: ε_1 , $\varepsilon_2 > 0$, (N + 1) number of discretization points k = 1Compute the boundary of the Pareto front: $(f_1^*, f_2(x_1^*))$, $(f_1(x_2^*), f_2^*)$ Parameters: $\beta_i^* = f_i^* - \varepsilon_i$, i = 1, 2, Initial weights: w_0 , w_f , Δw REPEAT while k < NSet the current weights $w = w_0 + k\Delta w$, $w_1 = w$ and $w_2 = 1 - w$ Find a Pareto minimun x^* that solves Problem (MOP_w) Assign a point in the Pareto front: $\overline{f}^k = (f_1(x^*), f_2(x^*))$ k = k + 1

イロト イポト イヨト イヨト 二日

NUMERICAL RESULTS

- 一司

3

Numerical Results

- 9 thermal power plants (3 nuclear, 2 coal, 3 gas and 1 combustion turbine)
- Solar energy g_S^t generated by the relation:

$$s^t = 75 \max\left(\sin\left(\frac{(t-4)\pi}{5}\right), 0\right)$$

• Time horizon of 48 hours discretized in 2h time steps

Maximum of power that we can displaced at load-shaving

 $\gamma = 100$ Megawatts.

- Three instances, with different configurations for the battery:
 - **Battery one**: $Q_B = 117$, $P_I^{max} = 13.2$ and $P_O^{max} = 40$.
 - **Battery two**: $Q_B = 234$, $P_I^{max} = 26.4$ and $P_O^{max} = 80$.
 - **Battery three**: $Q_B = 200$, $P_I^{max} = 13.2$ and $P_O^{max} = 40$.

Numerical Results

Number of discretization points N = 100

Numerical Results

Number of discretization points N = 100

• Best option: battery 2.

(PGMO)

Load-shaving and Battery storage: similar behaviour

(PGMO)

November 14, 2017 20 / 24

Conclusions

- Both mechanisms, load-shaving and an EMS, have a positive effect on demand response. We observe a reduction in generation cost and carbon emission.
- If the battery is sufficiently large, the results are better than load-shaving.

Future Steps

- a) In discrete time, develop a dedicated bundle method combining achievement and improvement functions, exploiting warm starts to generate the Pareto front (ongoing work).
- b) In continuous time: solve the HJB formulation (without DR, that couples all time steps) and compare with **a)**.
- c) Include frequency control at peak times.

References

[1] B. Heymann, P. Martinon, F. Silva, F. Lanas, G. Jiménez, J.F. Bonnans. Continuous Optimal Control Approaches to Microgrid Energy Management. Energy Systems, 2017, Online First.

[2] R. P. Behnke, C. Benavides, F. Lanas, B. Severino, L. Reyes, J. Llanos, D. Sáez. A Microgrid Energy Management System Based on the Rolling Horizon Strategy. IEEE Trans. on Smart Grid, 4(2), 2013, 996-1006.

[3] A. Chaouachi, R. M. Kamel, R. Andoulski, K. Nagasaka. Multiobjective Intelligent Energy Management for a Microgrid. IEEE Trans. on Industrial Electronics, 60(4), 2013, 1688-1699.

[4] J. Jahn. Vector Optimization: Theory, Applications, and Extensions. Springer, Berlin (2011)

[5] C.Y. Kaya and H. Maurer. A Numerical Method for Nonconvex Multi-Objective Optimal Control Problems. Comput Optim Appl, 57: 685-702, 2014.

Merci de votre attention

- 一司

3