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Goals

For a toy power mix problem, to compare the pros and cons of imple-
menting a demand-response mechanism by considering:

a) Load-shaving constraints

b) Energy-management system depending on a battery

Energy problems often consider cost minimization or revenue maximiza-
tion. Another important concern refers to the environmental impact in
terms of carbon emissions

The inclusion of a third objective, aiming at maximizing the battery
life, could also be important to take into account .
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MATHEMATICAL FORMULATION
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Mathematical Formulation

N utilities Kj and T time steps

Cost cj of the energy generated by utility Kj

CO2 emission Ej from utility Kj

g t
j power generated by utility Kj at time t

Technological constraints for generated power g t
j in G t

j (affine set)

Customers’ demand d t at time t

minimize

 N∑
j=1

T∑
t=1

cjg
t
j ,

N∑
j=1

T∑
t=1

Ejg
t
j


subject to g t

j ∈ G t
j , j = 1, . . . ,N, t = 1, . . . ,T

N∑
j=1

g t
j = d t , t = 1, . . . ,T
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Load-shaving

The load-shaving constraint shifts in time a portion of the energy
consumption (in exchange of some compensation, such as a
preferential fee).

Shifting consumption away from the peak hours reduces generation
costs and keeps the electrical network less congested.

Model

−γ ≤ x t ≤ v t ≤ γ, t = 1, . . . ,T ,
v t ≥ 0 t = 1, . . . ,T ,
T∑
t=1

x t = 0,
T∑
t=1

v t ≤ γ,

x t is the displaced energy at time t

v t is the maximum power that can be displaced at each period

γ is a bound for the power that can be shifted along the planning
horizon
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Energy Management System

Along the lines of

B. Heymann, P. Martinon, F. Silva, F. Lanas, G. Jiménez, e J.F.
Bonnans.Continuous Optimal Control Approaches to Microgrid
Energy Management. https://hal.inria.fr/hal-01129393,
2015.

The battery can store energy for later use, but has a limited capacity and
power.

(PGMO) November 14, 2017 6 / 24

https://hal.inria.fr/hal-01129393


Energy Management System

Along the lines of

B. Heymann, P. Martinon, F. Silva, F. Lanas, G. Jiménez, e J.F.
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Energy Management System

Variables

y t : state of charge of the battery at time t
P t
I and P t

O : input and output power of the battery at time t

Parameters

QB : maximum capacity of the battery
ρI , ρO ∈ [0, 1]: efficiency ratios for the charge and discharge processes
ymin and ymax : minimum and maximum of the state of charge of the
battery
Pmax
I and Pmax

O : maximum input and output power of the battery
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Energy Management System Constraints

y t+1 − y t =
1

QB

(
Pt
I ρI −

Pt
O

ρO

)
{

Pt
I ∈ [0,Pmax

I ] if y t < 0.9
Pt
I ≤ 100Pmax

I (y t − 1)2 otherwise

Pt
O ∈ [0,Pmax

O ], y1 = yT

N∑
j=1

g t
j + Pt

O − Pt
I = d t

Pt
O = −min

0,
N∑
j=1

g t
j − d t


Pt
I = max

0,
N∑
j=1

g t
j − d t


for t = 1, . . . ,T ,
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MULTI-OBJECTIVE OPTIMIZATION
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Multi-objective problem (MOP)

minimize f (x) = (f1(x), . . . , fs(x))
suject to x ∈ Q

x∗ ∈ Q is a Pareto solution if there exists no x ∈ Q such that
f (x) 6= f (x∗) and

fi (x)≤fi (x∗), for all i = 1, · · · , s.

x∗ ∈ Q is a weak Pareto solution if there exists no x ∈ Q such that

fi (x)<fi (x
∗), for all i = 1, · · · , s.

Set of Pareto and weak Pareto solutions: P and Pw

Pareto and weak Pareto front:

F = {f (x) | x ∈ P}, Fw = {f (x) | x ∈ Pw}
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Example: Pareto and weak Pareto Front
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Multi-objective programming solution method

C.Y. Kaya and H. Maurer. A Numerical Method for Nonconvex
Multi-Objective Optimal Control Problems. Comput Optim Appl, 57:
685-702, 2014.

Single objective problem Pi

Minimize fi (x)
suject to: x ∈ Q

Denote x∗i a solution of (Pi ) and f ∗i = fi (x
∗
i ).

Define a utopian objective vector β∗

β∗i = f ∗i − εi

where εi > 0 for all i = 1, · · · , s.
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Scalarization

Weighted Chebyshev problem (MOPw )

minimize max
i=1,...,s

wi (fi (x)− β∗i )

subject to x ∈ Q

where wi ≥ 0, i = 1, . . . , s and
s∑

i=1

wi = 1.

Theorem [J. Jahn, Corollary 5.35]

A vector x∗ ∈ Q is a weak Pareto minimum of (MOP) if, and only if,
x∗ ∈ Q is a solution of (MOPw ) for some w1, · · · ,ws > 0.
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Multi-objective programming solution method

Problem (MOPw ) is a non-smooth optimization problem, because of the
max operator in the objective. So it is re-formulated as:

Smooth form of (MOPw )

minimize α

subject to α ≥ 0
x ∈ Q
w1(f1(x)− β∗1) ≤ α,
...
ws(fs(x)− β∗s ) ≤ α
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Algorithm by Kaya and Maurer, Comput Optim Appl, 2014

Data: ε1, ε2 > 0, (N + 1) number of discretization points
k = 1
Compute the boundary of the Pareto front: (f ∗1 , f2(x∗1 )), (f1(x∗2 ), f ∗2 )
Parameters: β∗i = f ∗i − εi , i = 1, 2,
Initial weights: w0, wf , ∆w
Repeat while k < N

Set the current weights w = w0 + k∆w , w1 = w and w2 = 1− w
Find a Pareto minimun x∗ that solves Problem (MOPw )
Assign a point in the Pareto front: f̄ k = (f1(x∗), f2(x∗))
k = k + 1
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NUMERICAL RESULTS
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Numerical Results

9 thermal power plants (3 nuclear, 2 coal, 3 gas and 1 combustion
turbine)

Solar energy g t
S generated by the relation:

st = 75 max

(
sin

(
(t − 4)π

5

)
, 0

)
Time horizon of 48 hours discretized in 2h time steps
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Numerical Results

Maximum of power that we can displaced at load-shaving

γ = 100 Megawatts.

Three instances, with different configurations for the battery:

Battery one: QB = 117, Pmax
I = 13.2 and Pmax

O = 40.

Battery two: QB = 234, Pmax
I = 26.4 and Pmax

O = 80.

Battery three: QB = 200, Pmax
I = 13.2 and Pmax

O = 40.
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Numerical Results
Number of discretization points N = 100

Best option: battery 2.
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Load-shaving and Battery storage: similar behaviour
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Conclusions

Both mechanisms, load-shaving and an EMS, have a positive effect
on demand response. We observe a reduction in generation cost and
carbon emission.

If the battery is sufficiently large, the results are better than
load-shaving.
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Future Steps

a) In discrete time,develop a dedicated bundle method combining achieve-
ment and improvement functions, exploiting warm starts to generate
the Pareto front (ongoing work).

b) In continuous time: solve the HJB formulation (without DR, that cou-
ples all time steps) and compare with a).

c) Include frequency control at peak times.
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Merci de votre attention
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