How much is information worth?
A geometric insight using duality between payoffs and beliefs

Michel De Lara and Olivier Gossner

CERMICS, École des Ponts ParisTech
CNRS, X – Paris Saclay and LSE

PGMO Days, Paris, 14 November 2017
I am not sure that my husband is cheating on me. What should I do?

A spouse

- can gather information about the current state of Nature:
 - has my husband really been to this (mathematical) conference?
 - if yes, was his secretary travelling with him?
 - is my husband cheating on me?
- makes a decision, taken from a set:
 - stay faithful to her husband ("freeze")
 - stay with her husband and cheat on him ("fight")
 - divorce ("flee")

What is the value of hiring a private detective? Will valuable information make the spouse change her current choice?
Decision under incomplete information

Investment, insurance, voting, hiring, etc. virtually all decisions involve incomplete information

How valuable information is depends on

- The agent’s available decisions
- The agent’s utility function (preferences)
- The agent’s prior belief on the state of Nature
- The piece of information

Uniform approach: Blackwell (1951, 1953)

A piece of information α is more informative than β iff all agents (available decisions, utility, prior) weakly prefer α to β.

Our objective

What is the value of a given piece of information for a given agent?
Outline of the presentation

A Geometric View of the Value of Information

Confident, Undecided, Flexible

Examples: Small Information

Conclusion
Outline of the presentation

A Geometric View of the Value of Information

Confident, Undecided, Flexible

Examples: Small Information

Conclusion
An agent acquires information before making a decision

An agent

- observes information about the current state of Nature
- makes a decision, taken from a set

How much information is worth for the agent depends jointly on

- The information provided
- The decision problem (decisions at stake and preferences)

Our objective

Characterize the Value of Information based on separate conditions on

- The information structure
- The choices available (instrumental approach: choice=decision+payoff)
Here is how we frame the problem in mathematical clothes

Prior belief and information received

- A (finite) set K of states of nature, a prior belief $\bar{b} \in \Delta = \Delta(K)$
- An information structure is a random variable (r.v.) B with values in Δ such that $\mathbb{E}B = \bar{b}$ (beliefs about beliefs)

Decisions and preferences

Set D of decisions, utility function $u: D \times K \rightarrow \mathbb{R}$

Actions are payoff vectors $\mathbb{A} = \{u(d, \cdot) \mid d \in D\} \subset \mathbb{R}^K$

We assume \mathbb{A} compact, convex (mixed strategies)

Value of information

$$V_{\mathbb{A}}(b) = \sup_{a \in \mathbb{A}} \mathbb{E}_b a = \sup_{a \in \mathbb{A}} \langle b, a \rangle , \text{ for all belief } b \in \Delta$$

$$\text{VoI}_{\mathbb{A}}(B) = \mathbb{E} V_{\mathbb{A}}(B) - V_{\mathbb{A}}(\mathbb{E}B) , \text{ for all information structure } B$$
Geometric representation of the value function

\(V_A(b) = \max_{a \in A} \mathbb{E}_b a = \max_{a \in A} \langle b, a \rangle \)

\[K = \{ k, \overline{k} \}, \text{ choices/payoffs are } \{(3, 0), (2, 2), (0, \frac{5}{2})\} \]

Optimal action \(a \) as a function of belief \(b \)

Belief \(b \) is in normal to \(A \) at action \(a \)

Varying action \(a \)

The subgradient of \(V \) at nominal belief \(b \) are the optimal actions.
Geometric formalization using duality

The value function $V_A(b) = \max_{a \in A} \langle b, a \rangle$ is a support function, the Fenchel transform of the characteristic function χ_A of the set A

Optimal actions

For any belief $b \in \Delta$, let $A^*(b)$ be the the set of optimal actions at b (justifiable actions)

$$A^*(b) = \{ a \in A \mid V_A(b) = \langle b, a \rangle \}$$

Optimal actions $A^*(b)$ form the subgradient of V_A at b

$$A^*(b) = \{ a \in A \mid \forall b' \in \Delta , \ V_A(b') - V_A(b) \geq \langle b' - b, a \rangle \}$$

Revealed beliefs

For any action $a \in A$, let $\Delta^*_A(a)$ be the beliefs revealed by a (justifiable)

$$\Delta^*_A(a) = \{ b \in \Delta \mid \forall a' \in A , \ \langle b, a' \rangle \leq \langle b, a \rangle \}$$

The revealed beliefs $\Delta^*_A(a)$ are the beliefs in the normal cone of the set A at action a, compatible with the observed action, hence non refutable
Outline of the presentation

A Geometric View of the Value of Information

Confident, Undecided, Flexible

Examples: Small Information

Conclusion
What is valuable information?

Confidence set
A belief $b \in \Delta$ is in the confidence set $\Delta_c^A(\bar{b})$ of the prior belief \bar{b} if the optimal actions at \bar{b} are also optimal at b:

$$\Delta_c^A(\bar{b}) = \bigcap_{a \in A^*(\bar{b})} \Delta^*_A(a)$$

The confidence set $\Delta_c^A(\bar{b})$ is closed, convex and contains \bar{b}

Proposition

$$\text{VoI}_A(B) = 0 \quad \text{iff} \quad \exists a^* \in A^*(\bar{b}), \ a^* \in A^*(B) \ a.s.$$

$$\text{iff} \quad B \in \Delta_c^A(\bar{b}) \ a.s.$$

This result is aligned with the common wisdom that information is valueless if it does not impact choices
Theorem: Bounds on the Vol
There exist a positive constant $C_\mathbb{A}$ such that, for every information structure \mathbb{B},

$$C_\mathbb{A} \mathbb{E} \delta(\Delta^c_\mathbb{A}(\bar{b}), \mathbb{B}) \geq \text{VoI}_\mathbb{A}(\mathbb{B}) \geq \text{VoI}_{\mathbb{A}^*}(\bar{b})(\mathbb{B})$$

where $\delta(\Delta^c_\mathbb{A}(\bar{b}), b') = \inf_{b \in \Delta^c_\mathbb{A}(\bar{b})} \|b - b'\|$
Undecided

Proposition

The two following conditions are equivalent

- Optimal actions $A^*(\bar{b})$ contains at least one nontrivial segment (equivalently, there are more than two optimal actions)
- The value function V_A is not differentiable at the prior belief \bar{b}

In that case we say the agent is undecided at \bar{b}

Example: indifference in a finite choice set

Bounds on the Vol for the undecided agent

If the agent is undecided at \bar{b}, there exist positive constants $C_{\bar{b},A}$ and $c_{\bar{b},A}$ such that, for every information structure B,

$$C_{\bar{b},A} \mathbb{E} \| B - \bar{b} \| \geq \text{Vol}_A(B) \geq c_{\bar{b},A} \mathbb{E} \| B - \bar{b} \|_{\Sigma^i_A(\bar{b})} ,$$

where $\| \cdot \|_{\Sigma^i_A(\bar{b})}$ is a semi-norm with kernel $[A^*(\bar{b}) - A^*(\bar{b})]^\perp$

The valuable directions of information are the tie-breaking ones
Flexible

Suppose that A has boundary ∂A which is a C^2 submanifold of \mathbb{R}^K

Proposition

The three following conditions are equivalent:

- The set-valued mapping $b \mapsto A^*(b)$ is a mapping which is a local diffeomorphism at \bar{b}
- The Hessian of the value function V_A at the prior belief \bar{b} is well defined and is definite positive
- The curvature of A at $A^*($ \bar{b} $)$ is positive

In that case we say the agent is flexible at \bar{b}

Examples: portfolio investment, scoring rules.

Theorem: Bounds on the VoI for the flexible agent

If the agent is flexible at \bar{b}, there exist positive constants $C_{\bar{b},A}$ and $c_{\bar{b},A}$ such that, for every information structure B,

$$C_{\bar{b},A} \mathbb{E} \| B - \bar{b} \|^2 \geq \text{VoI}_A(B) \geq c_{\bar{b},A} \mathbb{E} \| B - \bar{b} \|^2$$
An agent can be both confident (for certain beliefs) and undecided (in certain directions of information): the value function V_A is not differentiable at belief \bar{b} and displays a flat part (vee shape).

A flexible agent cannot be confident or undecided: the value function V_A is differentiable at belief \bar{b} and does not display a flat part.
Outline of the presentation

A Geometric View of the Value of Information

Confident, Undecided, Flexible

Examples: Small Information

Conclusion
Small information acquisition

- Browsing the web, magazines in a waiting room
- Turning on the radio for a couple of minutes
- Windows shopping
- A quick look at a pile of job applications

Both costs and benefits are relatively low
Can the benefit compensate the cost? (When?)
Radner Stiglitz (1984)

Under some technical conditions, the “marginal value” of a little piece of information is null.

Letting \((B^\theta)_{\theta > 0}\) be a family of information structures, the marginal value of information is

\[
V^+ = \limsup_{\theta \to 0} \frac{1}{\theta} \text{VoI}_A(B^\theta)
\]

Our contribution

Our bounds on the VoI allow to characterise the marginal VoI based on separate conditions on

- The parameterized information structure \((B^\theta)_{\theta > 0}\)
- The decision problem at hand \(A\)
Brownian motion (experimentation, repeated games...)

- Assume the agent observes the realisation of a Brownian motion with variance 1 and drift $k \in \{k, \bar{k}\}$ from time 0 to (small) θ

\[dZ_t = k dt + dW_t, \quad 0 \leq t \leq \theta \]

- The agent has initially uniform beliefs on the drift $k \in \{k, \bar{k}\}$

\[\bar{b} = \frac{1}{2} \delta_k + \frac{1}{2} \delta_{\bar{k}} \]

- For a small interval of time $\theta > 0$, we have

\[\mathbb{E} \| B^\theta - \bar{b} \| \sim \sqrt{\theta}, \quad \mathbb{E} \| B^\theta - \bar{b} \|^2 \sim \theta \]

Marginal value of information

- Confident: $V^+ = 0$
- Undecided: $V^+ = +\infty$
- Flexible: $0 < V^+ < +\infty$
Poisson (multi-armed bandits, strategic experimentation...)

- Assume the agent observes a Poisson process with intensity ρ from time 0 to (small) θ
- The agent has initially uniform beliefs on the intensity $\rho \in \{\rho, \bar{\rho}\}$

$$\tilde{b} = \frac{1}{2} \delta_\rho + \frac{1}{2} \delta_{\bar{\rho}}$$

- The observation of a success leads to an a posteriori $b = \frac{\bar{\rho}}{\bar{\rho} + \rho} \delta_{\bar{\rho}} + \frac{\rho}{\bar{\rho} + \rho} \delta_{\rho}$ and happens with probability $\sim \theta$

For a small interval of time $\theta > 0$, we have

$$\mathbb{E}\|B^\theta - \tilde{b}\| \sim \theta, \quad \mathbb{E}\|B^\theta - \tilde{b}\|^2 \sim \theta$$

Marginal value of information

- Confident:
 - $0 < V^+ < +\infty$ if b is not in the confidence set of \tilde{b}
 - $V^+ = 0$ if b is in the confidence set of \tilde{b}

- Undecided: $0 < V^+ < +\infty$

- Flexible: $0 < V^+ < +\infty$
Equally likely signals

- The agent has initially uniform beliefs on \(\{ \bar{k}, \bar{k} \} \)

\[
\bar{b} = \frac{1}{2} \delta_{\bar{k}} + \frac{1}{2} \delta_{\bar{k}}
\]

- After observing a signal, the equally likely posterior beliefs are

\[
\left(\frac{1}{2} - \theta^{\alpha} \right) \delta_{\bar{k}} + \left(\frac{1}{2} + \theta^{\alpha} \right) \delta_{\bar{k}}, \quad \left(\frac{1}{2} + \theta^{\alpha} \right) \delta_{\bar{k}} + \left(\frac{1}{2} - \theta^{\alpha} \right) \delta_{\bar{k}}
\]

\[
\mathbb{E} \| \mathbf{B}^{\theta} - \bar{b} \| \sim \theta^{\alpha}, \quad \mathbb{E} \| \mathbf{B}^{\theta} - \bar{b} \|^2 \sim \theta^{2\alpha}
\]

Marginal value of information

- Confident:
 - \(V^{+} = 0 \)

- Undecided:
 - \(V^{+} = \infty \) if \(\alpha < 1 \)
 - \(0 < V^{+} < +\infty \) if \(\alpha = 1 \)
 - \(V^{+} = 0 \) is \(\alpha > 1 \)

- Flexible:
 - \(V^{+} = \infty \) if \(\alpha < \frac{1}{2} \)
 - \(0 < V^{+} < +\infty \) if \(\alpha = \frac{1}{2} \)
 - \(V^{+} = 0 \) is \(\alpha > \frac{1}{2} \)
Summary of cases

For two elements of \(x, y \) of \(\mathbb{R}_+ \cup \{\infty\} \), we use the notation \(x \sim y \) if \(x, y \) are both 0, both finite and positive (strictly), or both infinite:

\[
x \sim y \iff x, y \in \{(0, 0), (\infty, \infty)\} \cup]0, \infty[\times]0, \infty[
\]

<table>
<thead>
<tr>
<th>(V^+)</th>
<th>Confident</th>
<th>Undecided</th>
<th>Flexible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>1 (or 0)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Brownian</td>
<td>0</td>
<td>(\infty)</td>
<td>1</td>
</tr>
<tr>
<td>ELS, (\alpha < \frac{1}{2})</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>ELS, (\alpha = \frac{1}{2})</td>
<td>0</td>
<td>(\infty)</td>
<td>1</td>
</tr>
<tr>
<td>ELS, (\frac{1}{2} < \alpha < 1)</td>
<td>0</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>ELS, (\alpha = 1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ELS, (\alpha > 1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Relation with the literature

 Joint conditions on the parameterized information structure \((\mathcal{B}^\theta)_{\theta>0}\) and the decision problem at hand \(\mathcal{A}\), leading to \(V^+ = 0\)

 Joint/separate conditions on the parameterized information structure \((\mathcal{B}^\theta)_{\theta>0}\) and the decision problem at hand \(\mathcal{A}\), leading to \(V^+ = 0\)

 Separate conditions on the parameterized information structure \((\mathcal{B}^\theta)_{\theta>0}\) and the decision problem at hand \(\mathcal{A}\), leading to \(V^+ = 0\)

- **De Lara, M., and O. Gossner**
 Separate conditions on the parameterized information structure \((\mathcal{B}^\theta)_{\theta>0}\) and the decision problem at hand \(\mathcal{A}\), leading to \(V^+ = \infty, 0 < V^+ < +\infty\) or \(V^+ = 0\)
Outline of the presentation

A Geometric View of the Value of Information

Confident, Undecided, Flexible

Examples: Small Information

Conclusion
To conclude

The value of information \(\text{VoI} \) depends on how strong is the effect of information on choices

- Lowest for a confident decision maker (locally flat value function \(V_A \))
 - The agent is “hard to convince” to change decisions
 - The information structure \(B \) must charge beliefs outside the confidence set to shake the agent

- Highest in case of an indifference in the choice set (kinked value function \(V_A \))
 - A “small piece” of information can have a large influence on the decision

- Mild when the decision problem is smooth and one-to-one (curved value function \(V_A \))
 - In this case, the optimal decision when the belief is \(\bar{b} \) is “almost optimal” (envelope theorem) when the belief is near \(\bar{b} \)
Historically, dual variables moved from geometric to economic flavor

- Lagrange multipliers of inequality constraints are geometric objects
- Kantorovich’s “objectively determined estimators” or “resolving multipliers” are the economic dual variables of primal quantities
- The price of a resource is the sensitivity of the optimal payoff with respect to a small increment of the resource

In the duality between payoffs/actions and beliefs, what is

- the equivalent of a production function? (is it minus a risk measure?)
- the “economic” interpretation of beliefs (probability distributions) as dual variables of primal payoff/action vectors (one payoff per state of the world)?