Douady’s Rabbit
= Julia set of the map $z \mapsto z^2 + c$, with c s.t. $c^3 + 2c^2 + c + 1 = 0$
Dynamics in one variable

Some pictures of Julia sets

Julia set of the map $z \mapsto z^2 + 0,3$
Dynamics in one variable

Some pictures of Julia sets

Fractal nature of the Julia set of the previous picture
Dynamics in one variable

Some pictures of Julia sets

Julia set of the map $z \mapsto z^2 + c$ with $c = -0.74543 + 0.11301i$
Dynamics in one variable

Some pictures of Julia sets

Julia set of the map $z \mapsto z^2 + c$ with $c = -0.75 + 0.11i$
Dynamics in one variable

Some pictures of Julia sets

Julia set of the map $z \mapsto z^2 - 1$
Dynamics in one variable
Some pictures of Julia sets

Julia set of the map $z \mapsto e^{2i\pi} + z^2$
Definition

For any topological space X the (Alexandroff) one-point compactification \hat{X} of X is obtained by adding one extra point ∞ (often called a point at infinity) and defining the open sets of \hat{X} to be
For any topological space X the (Alexandroff) one-point compactification \hat{X} of X is obtained by adding one extra point ∞ (often called a point at infinity) and defining the open sets of \hat{X} to be:

- the open sets of X,

Definition

Riemann sphere = $\hat{\mathbb{C}}$
Definition

For any topological space X the (Alexandroff) one-point compactification \hat{X} of X is obtained by adding one extra point ∞ (often called a point at infinity) and defining the open sets of \hat{X} to be

- the open sets of X,
- the sets of the form $\mathcal{U} \cup \{\infty\}$, where \mathcal{U} is an open subset of X such that $X \setminus \mathcal{U}$ is closed and compact.
Definition

For any topological space X the *(Alexandroff) one-point compactification* \hat{X} of X is obtained by adding one extra point ∞ (often called a point at infinity) and defining the open sets of \hat{X} to be

- the open sets of X,
- the sets of the form $U \cup \{\infty\}$, where U is an open subset of X such that $X \setminus U$ is closed and compact.

Definition

Riemann sphere $= \hat{\mathbb{C}}$
Why Riemann sphere?

Consider the sphere

$$\mathbb{R}^3 \supset S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$
Why Riemann sphere?

Consider the sphere

\[\mathbb{R}^3 \supset \mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\} \]

Let us identify the hyperplane \(z = 0 \) with \(\mathbb{C} \) via the isomorphism

\[(x, y, 0) \mapsto x + iy\]
Why Riemann sphere?

Consider the sphere

$$\mathbb{R}^3 \supset \mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

Let us identify the hyperplane $z = 0$ with \mathbb{C} via the isomorphism

$$(x, y, 0) \mapsto x + iy$$

The stereographic projection π from $(0, 0, 1)$ gives the identification between $\hat{\mathbb{C}}$ and \mathbb{S}^2.
Why Riemann sphere?

Consider the sphere

$$\mathbb{R}^3 \supset S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

Let us identify the hyperplane $z = 0$ with \mathbb{C} via the isomorphism

$$(x, y, 0) \mapsto x + iy$$

The stereographic projection π from $(0, 0, 1)$ gives the identification between $\hat{\mathbb{C}}$ and S^2

$$\pi : (x, y, z) \mapsto \begin{cases} \infty & \text{if } (x, y, z) = (0, 0, 1) \\ \frac{x + iy}{1 - z} & \text{otherwise} \end{cases}$$

$$\pi^{-1} : z = x + iy \mapsto \begin{cases} (0, 0, 1) & \text{if } z = \infty \\ \frac{(2x, 2y, |z|^2 - 1)}{|z|^2 + 1} & \text{otherwise} \end{cases}$$
Definition (holomorphic)

If \(\mathcal{V} \subset \mathbb{C} \) is an open set of complex numbers, a function \(f : \mathcal{V} \to \mathbb{C} \) is called \textbf{holomorphic} if the first derivative

\[
z \mapsto f'(z) = \lim_{h \to 0} \frac{f(z + h) - f(z)}{h}
\]

is defined and continuous as a function from \(\mathcal{V} \) to \(\mathbb{C} \),
Definition (holomorphic)

If \(\mathcal{V} \subset \mathbb{C} \) is an open set of complex numbers, a function \(f : \mathcal{V} \rightarrow \mathbb{C} \) is called **holomorphic** if the first derivative

\[
z \mapsto f'(z) = \lim_{h \to 0} \frac{f(z + h) - f(z)}{h}
\]

is defined and continuous as a function from \(\mathcal{V} \) to \(\mathbb{C} \), or equivalently if \(f \) has a power series expansion about any point \(z_0 \in \mathcal{V} \) which converges to \(f \) in some neighborhood of \(z_0 \).
Definition (Normal family)

Let \mathcal{F} be a family of holomorphic maps from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$.
Definition (Normal family)

Let \mathcal{F} be a family of holomorphic maps from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$. The family \mathcal{F} is \textbf{normal} if any infinite sequence of functions in \mathcal{F} contains a subsequence which converges locally uniformly to some limit function from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$.
Definition (Normal family)

Let \mathcal{F} be a family of holomorphic maps from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$. The family \mathcal{F} is **normal** if any infinite sequence of functions in \mathcal{F} contains a subsequence which converges locally uniformly to some limit function from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$.

Definition (Fatou set, Julia set)

$f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ non constant holomorphic map

The domain of normality for the collection of iterates $\{f^n\}$ is called the **Fatou set** of f, and its complement is called the **Julia set** of f. Notations: $J_f = \text{Julia set}$, $\hat{\mathbb{C}} \setminus J_f = \text{Fatou set}$.
Definition (Normal family)
Let \(\mathcal{F} \) be a family of holomorphic maps from \(\hat{\mathbb{C}} \) to \(\hat{\mathbb{C}} \). The family \(\mathcal{F} \) is \textbf{normal} if any infinite sequence of functions in \(\mathcal{F} \) contains a subsequence which converges locally uniformly to some limit function from \(\hat{\mathbb{C}} \) to \(\hat{\mathbb{C}} \).

Definition (Fatou set, Julia set)
\(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) non constant holomorphic map
The domain of normality for the collection of iterates \(\{f^n\} \) is called the \textbf{Fatou set} of \(f \),
Definition (Normal family)

Let F be a family of holomorphic maps from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$. The family F is **normal** if any infinite sequence of functions in F contains a subsequence which converges locally uniformly to some limit function from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$.

Definition (Fatou set, Julia set)

$f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ non constant holomorphic map

The domain of normality for the collection of iterates $\{f^n\}$ is called the **Fatou set** of f, and its complement is called the **Julia set**.
Definition (Normal family)

Let \mathcal{F} be a family of holomorphic maps from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$. The family \mathcal{F} is **normal** if any infinite sequence of functions in \mathcal{F} contains a subsequence which converges locally uniformly to some limit function from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$.

Definition (Fatou set, Julia set)

$f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ non constant holomorphic map

The domain of normality for the collection of iterates $\{f^n\}$ is called the **Fatou set** of f, and its complement is called the **Julia set**.

Notations:

$J_f = \text{Julia set}$

$\hat{\mathbb{C}} \setminus J_f = \text{Fatou set}$
Definition (Normal family)

Let \mathcal{F} be a family of holomorphic maps from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$. The family \mathcal{F} is **normal** if any infinite sequence of functions in \mathcal{F} contains a subsequence which converges locally uniformly to some limit function from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$.

Definition (Fatou set, Julia set)

$f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ non constant holomorphic map

The domain of normality for the collection of iterates $\{f^n\}$ is called the **Fatou set** of f, and its complement is called the **Julia set**.

Notations:

$J_f = $ Julia set
Definition (Normal family)

Let \mathcal{F} be a family of holomorphic maps from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$. The family \mathcal{F} is **normal** if any infinite sequence of functions in \mathcal{F} contains a subsequence which converges locally uniformly to some limit function from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$.

Definition (Fatou set, Julia set)

$f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ non constant holomorphic map
The domain of normality for the collection of iterates $\{f^n\}$ is called the **Fatou set** of f, and its complement is called the **Julia set**.

Notations:

$J_f = \text{Julia set}$
$\hat{\mathbb{C}} \setminus J_f = F_f = \text{Fatou set}$
Definition (Normal family)

Let \mathcal{F} be a family of holomorphic maps from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$. The family \mathcal{F} is **normal** if any infinite sequence of functions in \mathcal{F} contains a subsequence which converges locally uniformly to some limit function from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$.

Definition (Fatou set, Julia set)

$f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ non constant holomorphic map

The domain of normality for the collection of iterates $\{f^n\}$ is called the **Fatou set** of f, and its complement is called the **Julia set**.

Notations:

$J_f =$ Julia set

$\hat{\mathbb{C}} \setminus J_f = F_f =$ Fatou set
\(\forall p \in \hat{\mathbb{C}} \) one has the following dichotomy:
∀ \(p \in \hat{\mathbb{C}} \) one has the following dichotomy:

- if \(\exists \) some neighborhood \(\mathcal{U} \) of \(p \) s.t. the sequence of iterates \(\{f^n\} \)
 restricted to \(\mathcal{U} \) forms a normal family of maps from \(\mathcal{U} \) to \(\hat{\mathbb{C}} \), then we say that \(p \in F_f \);

- otherwise we say that \(p \in J_f \).

\(J_f \) is a closed subset of \(\hat{\mathbb{C}} \), while \(F_f \) is an open subset.
We will see that a point \(p \in J_f \) ⇔ dynamics in a neighborhood of \(p \) displays sensitive dependence on initial conditions, so that nearby initial conditions lead to widely different behaviors after a large (or sometimes not so large) number of iterations.
\[\forall \, p \in \hat{\mathbb{C}} \text{ one has the following dichotomy:} \]

- if \(\exists \) some neighborhood \(U \) of \(p \) s.t. the sequence of iterates \(\{ f^n \} \) restricted to \(U \) forms a normal family of maps from \(U \) to \(\hat{\mathbb{C}} \), then we say that \(p \in F_f \);
- otherwise we say that \(p \in J_f \).
∀ $p \in \hat{\mathbb{C}}$ one has the following dichotomy:

- if \exists some neighborhood \mathcal{U} of p s.t. the sequence of iterates $\{f^n\}$ restricted to \mathcal{U} forms a normal family of maps from \mathcal{U} to $\hat{\mathbb{C}}$, then we say that $p \in F_f$;

- otherwise we say that $p \in J_f$.

J_f is a closed subset of $\hat{\mathbb{C}}$, while F_f is an open subset.
∀ \(p \in \hat{C} \) one has the following dichotomy:

- if \(\exists \) some neighborhood \(\mathcal{U} \) of \(p \) s.t. the sequence of iterates \(\{f^n\} \) restricted to \(\mathcal{U} \) forms a normal family of maps from \(\mathcal{U} \) to \(\hat{C} \), then we say that \(p \in F_f \);
- otherwise we say that \(p \in J_f \).

\(J_f \) is a closed subset of \(\hat{C} \), while \(F_f \) is an open subset.
∀ \(p \in \hat{\mathbb{C}} \) one has the following dichotomy:

- if \(\exists \) some neighborhood \(\mathcal{U} \) of \(p \) s.t. the sequence of iterates \(\{ f^n \} \) restricted to \(\mathcal{U} \) forms a normal family of maps from \(\mathcal{U} \) to \(\hat{\mathbb{C}} \), then we say that \(p \in F_f \);
- otherwise we say that \(p \in J_f \).

\(J_f \) is a closed subset of \(\hat{\mathbb{C}} \), while \(F_f \) is an open subset.

We will see that a point \(p \in J_f \iff \) dynamics in a neighborhood of \(p \) displays sensitive dependence on initial conditions, so that nearby initial conditions lead to widely different behaviors after a large (or sometimes not so large) number of iterations.
Any holomorphic map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ on the Riemann sphere can be expressed as a rational function, that is, as the quotient $\frac{P(z)}{Q(z)}$ of two polynomials.
Any holomorphic map $f : \mathbb{C} \to \mathbb{C}$ on the Riemann sphere can be expressed as a rational function, that is, as the quotient $\frac{P(z)}{Q(z)}$ of two polynomials. May assume that P and Q are coprime.
Any holomorphic map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ on the Riemann sphere can be expressed as a rational function, that is, as the quotient $\frac{P(z)}{Q(z)}$ of two polynomials. May assume that P and Q are coprime.

degree of $f = \max(\deg P, \deg Q)$.
Any holomorphic map \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) on the Riemann sphere can be expressed as a rational function, that is, as the quotient \(\frac{P(z)}{Q(z)} \) of two polynomials. May assume that \(P \) and \(Q \) are coprime.

degree of \(f = \max(\deg P, \deg Q) \).

For all but finitely many choices of constant \(c \in \hat{\mathbb{C}} \)

degree of \(f = (\text{number of distinct solutions to the equation } f(z) = c) \)
Any holomorphic map \(f : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \) on the Riemann sphere can be expressed as a rational function, that is, as the quotient \(\frac{P(z)}{Q(z)} \) of two polynomials. May assume that \(P \) and \(Q \) are coprime.

degree of \(f \) = \(\max(\deg P, \deg Q) \).

For all but finitely many choices of constant \(c \in \hat{\mathbb{C}} \)

\[
\text{degree of } f = (\text{number of distinct solutions to the equation } f(z) = c)
\]

Let us now assume that degree of \(f \geq 2 \).
Example

Let us consider the squaring map

\[s : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}, \quad z \mapsto z^2 \]
Example

Let us consider the squaring map

\[s: \hat{\mathbb{C}} \to \hat{\mathbb{C}}, \quad z \mapsto z^2 \]

1. the entire open disk \(\mathbb{D} \) is contained in \(F_s \), as successive iterates on any compact subset converge uniformly to 0.
Example

Let us consider the squaring map

\[s: \hat{\mathbb{C}} \to \hat{\mathbb{C}}, \quad z \mapsto z^2 \]

1. the entire open disk \(\mathbb{D} \) is contained in \(F_s \), as successive iterates on any compact subset converge uniformly to 0
2. similarly the exterior \(\hat{\mathbb{C}} \setminus \mathbb{D} \) is contained in \(F_s \), since the iterates of \(s \) converge to the constant function \(z \mapsto \infty \) outside of \(\overline{\mathbb{D}} \)
Let us consider the squaring map

\[s: \mathbb{C} \to \mathbb{C}, \quad z \mapsto z^2 \]

1. the entire open disk \(\mathbb{D} \) is contained in \(F_s \), as successive iterates on any compact subset converge uniformly to 0

2. similarly the exterior \(\mathbb{C} \setminus \mathbb{D} \) is contained in \(F_s \), since the iterates of \(s \) converge to the constant function \(z \mapsto \infty \) outside of \(\overline{\mathbb{D}} \)

3. on the other hand, \(z \in \) the unit circle \(\Rightarrow \) in any neighborhood of \(z \) any limit of the iterates \(s^n \) would necessarily have a jump discontinuity as we cross the unit circle
Example

Let us consider the squaring map

\[s : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}, \quad z \mapsto z^2 \]

1. the entire open disk \(\mathbb{D} \) is contained in \(F_s \), as successive iterates on any compact subset converge uniformly to 0
2. similarly the exterior \(\hat{\mathbb{C}} \setminus \mathbb{D} \) is contained in \(F_s \), since the iterates of \(s \) converge to the constant function \(z \mapsto \infty \) outside of \(\overline{\mathbb{D}} \)
3. on the other hand, \(z \in \) the unit circle \(\Rightarrow \) in any neighborhood of \(z \) any limit of the iterates \(s^n \) would necessarily have a jump discontinuity as we cross the unit circle \(\Rightarrow J_s = \) the unit circle.
Such smooth Julia sets are rather exceptional.
Such smooth Julia sets are rather exceptional. The following pictures illustrate quadratic polynomial maps.
Such smooth Julia sets are rather exceptional. The following pictures illustrate quadratic polynomial maps. In each case the Fatou set is white, and the Julia set is black.
Such smooth Julia sets are rather exceptional. The following pictures illustrate quadratic polynomial maps. In each case the Fatou set is white, and the Julia set is black.

\[z \mapsto z^2 + (0, 99 + 0, 14i)z \]

a wild curve
Dynamics in one variable
Julia sets of polynomial maps

$z \mapsto z^2 + i$

a **dendrite**, that is, a compact, connected set without interior that does not separate the space
Dynamics in one variable
Julia sets of polynomial maps

\[z \mapsto z^2 + (-0, 765 + 0, 12i) \]

A Cantor set: a rather thick totally disconnected set
Dynamics in one variable

Julia sets of polynomial maps

\[z \mapsto z^2 + (-0.765 + 0.12i) \]

a Cantor set: a rather thick totally disconnected set

Remark

in any of these pictures since the map is an even one the Julia set is centrally symmetric
Dynamics in one variable
Julia sets of polynomial maps

$z \mapsto z^2 + (-0, 122 + 0, 745i)$
the Douady rabbit

equation of Julia set whose complement has infinitely many connected components
non polynomial Julia sets can be even more diverse, as illustrated in the following pictures:
non polynomial Julia sets can be even more diverse, as illustrated in the following pictures:

\[z \mapsto 1 - \frac{1}{z^2} \]
Dynamics in one variable

Julia sets of non polynomial sets

\[
z \mapsto \frac{1 + \frac{i \sqrt{3}}{2} + z^2}{1 - z^2}
\]
Dynamics in one variable

Julia sets of non polynomial sets

\[z \mapsto -0,138(z + \frac{1}{z}) - 0,303 \]
Dynamics in one variable
Julia sets of non polynomial sets
Definition

method = holomorphic map $M: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ depending on a map f such that $\text{Fix } M \subset \{\text{roots of } f\}$
Definition

method = holomorphic map $M : \hat{C} \to \hat{C}$ depending on a map f such that $\text{Fix } M \subset \{ \text{roots of } f \}$

Remark that if z is a fixed point of M, then in a neighborhood of z, one has

$$M(z + h) = z + M(z)h + M^{(2)}(z)\frac{h^2}{2} + M^{(3)}(z)\frac{h^3}{3!} + \ldots$$

Hence
Definition

\textbf{method} = holomorphic map \(M : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) depending on a map \(f \) such that \(\text{Fix } M \subset \{ \text{roots of } f \} \)

Remark that if \(z \) is a fixed point of \(M \), then in a neighborhood of \(z \), one has

\[M(z + h) = z + M(z)h + M^{(2)}(z) \frac{h^2}{2} + M^{(3)}(z) \frac{h^3}{3!} + \ldots \]

Hence

\textbf{Definition}

\(M \) converges at order \(r > 0 \) at \(z \) if
Definition

method = holomorphic map \(M: \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) depending on a map \(f \) such that \(\text{Fix } M \subset \{ \text{roots of } f \} \)

Remark that if \(z \) is a fixed point of \(M \), then in a neighborhood of \(z \), one has

\[
M(z + h) = z + M(z)h + M^{(2)}(z) \frac{h^2}{2} + M^{(3)}(z) \frac{h^3}{3!} + \ldots
\]

Hence

Definition

\(M \) converges at order \(r > 0 \) at \(z \) if

- \(M(z) = z \),
Definition

method = holomorphic map \(M : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \) depending on a map \(f \) such that \(\text{Fix } M \subset \{ \text{roots of } f \} \)

Remark that if \(z \) is a fixed point of \(M \), then in a neighborhood of \(z \), one has

\[
M(z + h) = z + M(z)h + M^{(2)}(z)\frac{h^2}{2} + M^{(3)}(z)\frac{h^3}{3!} + \ldots
\]

Hence

Definition

\(M \) **converges at order** \(r > 0 \) at \(z \) if

- \(M(z) = z \),
- \(\forall 1 \leq i \leq r, \ M^{(i)}(z) = 0 \),

Dynamics in one variable

How to draw Julia sets?

Newton's method

Definition

method = holomorphic map $M: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ depending on a map f such that $\text{Fix } M \subset \{\text{roots of } f\}$

Remark that if z is a fixed point of M, then in a neighborhood of z, one has

$$M(z + h) = z + M(z)h + M^{(2)}(z)\frac{h^2}{2} + M^{(3)}(z)\frac{h^3}{3!} + \ldots$$

Hence

Definition

M **converges at order** $r > 0$ at z if

- $M(z) = z$,
- $\forall 1 \leq i \leq r$, $M^{(i)}(z) = 0$,
- $M^{(r+1)}(z) \neq 0$.
Newton’s method:

Let $N: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be the Newton's function of z, and $z_0 \in \mathbb{C}$.

Properties

1. Fix $N = \text{zeros of } f$
2. the convergence of a simple root is quadratic ($N' = f(f(z))/f'(z)$)
3. the convergence of a root of multiplicity k is $1 - 1/k$
4. ∞ is fixed and repulsive
Newton’s method:
Let $N: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ defined by

$$N(z) = z - \frac{f(z)}{f'(z)}$$

be the Newton’s function of z, and $z_0 \in \mathbb{C}$.
Newton’s method:
Let $N: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$N(z) = z - \frac{f(z)}{f'(z)}$$

be the Newton’s function of z, and $z_0 \in \mathbb{C}$.

Properties
Newton’s method:
Let $N: \mathbb{C} \to \mathbb{C}$ defined by

$$N(z) = z - \frac{f(z)}{f'(z)}$$

be the Newton’s function of z, and $z_0 \in \mathbb{C}$.

Properties

1. $\text{Fix } N = \text{zeros of } f$
Newton’s method:
Let $N: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ defined by

$$N(z) = z - \frac{f(z)}{f'(z)}$$

be the Newton’s function of z, and $z_0 \in \mathbb{C}$.

Properties

1. Fix $N = \text{zeros of } f$
2. the convergence of a simple root is quadratic ($N'(z) = \frac{f(z)f''(z)}{f'(z)^2}$)
Newton’s method:
Let $N: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ defined by

$$N(z) = z - \frac{f(z)}{f'(z)}$$

be the Newton’s function of z, and $z_0 \in \mathbb{C}$.

Properties

1. Fix $N = \text{zeros of } f$
2. the convergence of a simple root is quadratic ($N'(z) = \frac{f(z)f''(z)}{f'(z)^2}$)
3. the convergence of a root of multiplicity k is $1 - 1/k$
Newton’s method:
Let $N: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ defined by

$$N(z) = z - \frac{f(z)}{f'(z)}$$

be the Newton’s function of z, and $z_0 \in \mathbb{C}$.

Properties

1. **Fix $N = \text{zeros of } f$**
2. **the convergence of a simple root is quadratic** ($N'(z) = \frac{f(z)f''(z)}{f'(z)^2}$)
3. **the convergence of a root of multiplicity k is $1 - 1/k$**
4. **∞ is fixed and repulsive**
Example

Consider \(f(z) = z^2 + 1 \) roots of \(f \):
- \(i \), and
- \(-i \)

\(z_0 \in \mathbb{R} \Rightarrow \) the iterates of \(N(z) \) behave chaotically

\(z_0 \notin \mathbb{R} \Rightarrow \) Newton’s method converges

\(z_0 = 1 + 0.5i \),
\(z_1 = 0, 5, -0 + 0.0058i \)
\(z_2 = -0, 1853 + 1,2838i \)
\(z_3 = -0, 0058 - 1,0038i \)
\(z_4 = 0, 0009 + 0,9996i \),
\(z_5 = i \)
Example

Consider \(f(z) = z^2 + 1 \)
Example

Consider $f(z) = z^2 + 1$
roots of f: i, and $-i$
Example

Consider $f(z) = z^2 + 1$

roots of f: i, and $-i$

$z_0 \in \mathbb{R} \Rightarrow$ the iterates of $N(z)$ behave chaotically
Example

Consider \(f(z) = z^2 + 1 \)

roots of \(f \): \(i \), and \(-i\)

\(z_0 \in \mathbb{R} \Rightarrow \) the iterates of \(N(z) \) behave chaotically

\(z_0 \not\in \mathbb{R} \Rightarrow \) Newton’s method converges
Example

Consider $f(z) = z^2 + 1$

roots of f: i, and $-i$

$z_0 \in \mathbb{R} \Rightarrow$ the iterates of $N(z)$ behave chaotically

$z_0 \not\in \mathbb{R} \Rightarrow$ Newton’s method converges

\[
\begin{align*}
 z_0 &= 1 + 0.5i \\
 z_1 &= N(z_0) = 0, 1 + 0.4500i \\
 z_2 &= N^2(z_0) = -0.1853 + 1.2838i \\
 z_3 &= N^3(z_0) = -0.0376 - 1.0234i \\
 z_4 &= N^4(z_0) = -0.0009 + 0.9996i \\
 z_5 &= N^5(z_0) = i
\end{align*}
\]

\[
\begin{align*}
 z_0 &= 0.5 - i \\
 z_1 &= N(z_0) = 0.0500 - 0.9000i \\
 z_2 &= N^2(z_0) = -0.0058 - 1.0038i \\
 z_3 &= N^3(z_0) = -i
\end{align*}
\]
Basins of attraction for complex Newton’s method were first considered by Arthur Cayley.
Basins of attraction for complex Newton’s method were first considered by Arthur Cayley.
ζ root of \(f(z) \) \(\Rightarrow \)

basin of attraction of \(\zeta \)
\[= \{ z_0 \in \mathbb{C} \mid \text{Newton’s method starting at } z_0 \text{ converges to } \zeta \} \]
To view the basin of attraction for complex polynomials of degree ≥ 2 we make use of a computer.
To view the basin of attraction for complex polynomials of degree ≥ 2 we make use of a computer.
There are several algorithms that can be used to display the basins of attraction for complex Newton’s method.
To view the basin of attraction for complex polynomials of degree ≥ 2 we make use of a computer. There are several algorithms that can be used to display the basins of attraction for complex Newton’s method. The method that is used here is as follows:

1. Compute $f'(z)$ and $N(z)$;
2. Compute the roots of f (via factoring or numerical approximation on f);
3. Pick an initial point z_0 and compute the distance between z_0 and the roots of f. If the distance is less than some small ε, color the point the root color;
4. If not, iterate until the distance between the iterate and the roots of f is less than small value ε. Color the original point the appropriate root color.
To view the basin of attraction for complex polynomials of degree ≥ 2 we make use of a computer. There are several algorithms that can be used to display the basins of attraction for complex Newton’s method. The method that is used here is as follows:
To view the basin of attraction for complex polynomials of degree ≥ 2 we make use of a computer. There are several algorithms that can be used to display the basins of attraction for complex Newton’s method. The method that is used here is as follows:

1. compute $f'(z)$ and $N(z)$;
To view the basin of attraction for complex polynomials of degree ≥ 2 we make use of a computer. There are several algorithms that can be used to display the basins of attraction for complex Newton’s method. The method that is used here is as follows:

1. compute $f'(z)$ and $N(z)$;
2. compute the roots of f (via factoring or numerical approximation on f);
To view the basin of attraction for complex polynomials of degree ≥ 2 we make use of a computer. There are several algorithms that can be used to display the basins of attraction for complex Newton’s method. The method that is used here is as follows:

1. Compute $f'(z)$ and $N(z)$;
2. Compute the roots of f (via factoring or numerical approximation on f);
3. Pick an initial point z_0 and compute the distance between z_0 and the roots of f. If the distance is less than some small ε color the point the root color;
To view the basin of attraction for complex polynomials of degree ≥ 2 we make use of a computer. There are several algorithms that can be used to display the basins of attraction for complex Newton’s method. The method that is used here is as follows:

1. compute $f'(z)$ and $N(z)$;
2. compute the roots of f (via factoring or numerical approximation on f);
3. pick an initial point z_0 and compute the distance between z_0 and the roots of f. If the distance is less than some small ε color the point the root color;
4. if not, iterate until the distance between the iterate and the roots of f is less than small value ε. Color the original point the appropriate root color.
How to draw Julia sets?

Basins of attractions for $f(z) = z^3 - z$

- Points which converge to 0 are colored blue.
- Points which converge to 1 are colored green.
- Points which converge to -1 are colored red.
Dynamics in one variable

How to draw Julia sets?

Pictures

basins of attractions for $f(z) = z^3 - z$

roots of f are 0, 1 & -1
basins of attractions for $f(z) = z^3 - z$

roots of f are 0, 1 & -1
points which converge to 0 are colored blue
points which converge to 1 are colored green
points which converge to -1 are colored red
Dynamics in one variable
How to draw Julia sets?

Pictures

basins of attractions for $f(z) = z^3 - 1$
Dynamics in one variable

How to draw Julia sets?

Pictures

Basins of attractions for $f(z) = z^3 - 1$

Roots of f are 1, $\frac{-1}{2} + \frac{\sqrt{3}}{2}i$ & $\frac{-1}{2} - \frac{\sqrt{3}}{2}i$
Dynamics in one variable

How to draw Julia sets?

Pictures

basins of attractions for \(f(z) = z^3 - 1 \)

roots of \(f \) are 1, \(-\frac{1}{2} + \frac{\sqrt{3}}{2} \, i \) & \(-\frac{1}{2} - \frac{\sqrt{3}}{2} \, i \)
points which converge to 1 are colored green
points which converge to \(-\frac{1}{2} + \frac{\sqrt{3}}{2} \, i \) are colored red
points which converge to \(-\frac{1}{2} - \frac{\sqrt{3}}{2} \, i \) are colored blue
Dynamics in one variable

How to draw Julia sets?

Pictures

basins of attractions for \(f(z) = z^4 - 1 \)
Dynamics in one variable

How to draw Julia sets?

- Pictures

Basins of attractions for $f(z) = z^4 - 1$

Roots of f are 1, -1, i & $-i$
Dynamics in one variable

How to draw Julia sets?

Basins of attractions for $f(z) = z^4 - 1$

- Roots of f are 1, -1, i & $-i$.
- Points which converge to 1 are colored green.
- Points which converge to -1 are colored red.
- Points which converge to i are colored blue.
- Points which converge to $-i$ are colored teal.
Lemma (Invariance Lemma)

\[f : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \text{ holomorphic map} \]
Lemma (Invariance Lemma)

\[f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \text{ holomorphic map} \]

\[J_f \text{ is fully invariant under } f, \text{ that is, } z \in J_f \iff f(z) \in J_f. \]
Lemma (Invariance Lemma)

\(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) holomorphic map

\(J_f \) is fully invariant under \(f \), that is, \(z \in J_f \iff f(z) \in J_f \).

Idea of the proof.

Invariance Lemma \(\iff F_f \) fully invariant.
Lemma (Invariance Lemma)

$f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ holomorphic map

J_f is fully invariant under f, that is, $z \in J_f \iff f(z) \in J_f$.

Idea of the proof.

Invariance Lemma $\iff F_f$ fully invariant.

In fact for any open set $\mathcal{U} \subset \hat{\mathbb{C}}$, some sequence of iterates f^{n_j} converges uniformly on compact subsets of \mathcal{U} \iff the corresponding sequence of iterates f^{n_j+1} converges uniformly on compact subsets of the open set $f^{-1}(\mathcal{U})$.

It follows that J_f possesses a great deal of self-similarity:
It follows that J_f possesses a great deal of self-similarity: whenever $f(z_1) = z_2$ in J_f, with $f'(z_1) \neq 0$, there is an induced conformal isomorphism from a neighborhood N_1 of z_1 to a neighborhood N_2 of z_2, which takes $N_1 \cap J_f$ precisely onto $N_2 \cap J_f$.
Lemma (Iteration Lemma)

For any $k \geq 0$, $J_{f^k} = J_f$.

Lemma (Iteration Lemma)

For any $k \geq 0$, $J_{f^k} = J_f$.

Idea of the proof.

Again we can equally well work with F_f.
Lemma (Iteration Lemma)

For any $k \geq 0$, $J_{f^k} = J_f$.

Idea of the proof.

Again we can equally well work with F_f. Suppose, for example, that $z \in F_{f^2}$. This means that, for some neighborhood \mathcal{U} of z, the collection of $f_{|\mathcal{U}}^{2n}$ is contained in a compact subset $K \subset \text{Hol}(\mathcal{U}, \hat{\mathbb{C}})$.
Lemma (Iteration Lemma)

For any $k \geq 0$, $J_{f^k} = J_f$.

Idea of the proof.

Again we can equally well work with F_f. Suppose, for example, that $z \in F_{f^2}$. This means that, for some neighborhood \mathcal{U} of z, the collection of $f_{\mid \mathcal{U}}^{2n}$ is contained in a compact subset $K \subset \text{Hol}(\mathcal{U}, \hat{\mathbb{C}})$. It follows that every iterate of f, restricted to \mathcal{U}, belongs to the compact set $K \cup f \circ K \subset \text{Hol}(\mathcal{U}, \hat{\mathbb{C}})$.
Lemma (Iteration Lemma)

For any \(k \geq 0 \), \(J_{f^k} = J_f \).

Idea of the proof.

Again we can equally well work with \(F_f \).
Suppose, for example, that \(z \in F_{f^2} \). This means that, for some neighborhood \(\mathcal{U} \) of \(z \), the collection of \(f_{|\mathcal{U}}^{2n} \) is contained in a compact subset \(K \subset \text{Hol}(\mathcal{U}, \hat{\mathbb{C}}) \). It follows that every iterate of \(f \), restricted to \(\mathcal{U} \), belongs to the compact set \(K \cup f \circ K \subset \text{Hol}(\mathcal{U}, \hat{\mathbb{C}}) \Rightarrow z \in F_f \).
Definition (critical point)

\[z = \text{critical point of } f \iff f'(z) = 0 \]
Definition (critical point)

\[z = \text{critical point of } f \iff f'(z) = 0 \]

Definition (multiplier)

\[f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \text{ rational map} \]
Definition (critical point)

\[z = \text{critical point of } f \iff f'(z) = 0 \]

Definition (multiplier)

\(f : \hat{C} \to \hat{C} \) rational map
\(z_0 \) periodic point of period \(n \)
Definition (critical point)

\[z = \text{critical point of } f \Leftrightarrow f'(z) = 0 \]

Definition (multiplier)

\[f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \text{ rational map} \]
\[z_0 \text{ periodic point of period } n \]
\[\lambda_{z_0} = (f^n)'(z_0) = \text{multiplier of the periodic orbit} \]
Definition (critical point)

\[z = \textbf{critical point of } f \iff f'(z) = 0 \]

Definition (multiplier)

\[f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \text{ rational map} \]

\[z_0 \text{ periodic point of period } n \]

\[\lambda_{z_0} = (f^n)'(z_0) = \textbf{multiplier of the periodic orbit} \]

Definition (forward orbit of a point)

\[f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \text{ rational map} \]
Definition (critical point)

\[z = \text{critical point of } f \iff f'(z) = 0 \]

Definition (multiplier)

\[f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \text{ rational map} \]
\[z_0 \text{ periodic point of period } n \]
\[\lambda_{z_0} = (f^n)'(z_0) = \text{multiplier of the periodic orbit} \]

Definition (forward orbit of a point)

\[f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \text{ rational map} \]
\[\text{The sequence } \{z_n\} \text{ inductively defined by} \]
\[z_{n+1} = f(z_n) \]
Definition (critical point)

\(z = \text{critical point of } f \iff f'(z) = 0 \)

Definition (multiplier)

\(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) rational map
\(z_0 \) periodic point of period \(n \)
\[\lambda_{z_0} = (f^n)'(z_0) = \text{multiplier of the periodic orbit} \]

Definition (forward orbit of a point)

\(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) rational map
The sequence \(\{z_n\} \) inductively defined by
\[z_{n+1} = f(z_n) \]
is called the \textbf{forward orbit of} \(z_0 \), and is denoted \(\mathcal{O}^+(z_0) \).
Remark

chain rule $\Rightarrow \lambda_{z_0} = \text{product of the derivatives of } f \text{ along the orbit}$
Remark

chain rule $\Rightarrow \lambda_{z_0} = \text{product of the derivatives of } f \text{ along the orbit}$

$\Rightarrow \lambda_{z_0}$ is an invariant of $\mathcal{O}^+(z_0)$ rather than the particular point z_0.
Remark

chain rule \(\Rightarrow \lambda z_0 = \text{product of the derivatives of } f \text{ along the orbit} \)
\(\Rightarrow \lambda z_0 \) is an invariant of \(O^+(z_0) \) rather than the particular point \(z_0 \).
Whenever we discuss just one periodic orbit we will simply denote the multiplier by \(\lambda \).
Remark

chain rule $\Rightarrow \lambda_{z_0} = \text{product of the derivatives of } f \text{ along the orbit} \\
\Rightarrow \lambda_{z_0} \text{ is an invariant of } O^+(z_0) \text{ rather than the particular point } z_0. \\
Whenever we discuss just one periodic orbit we will simply denote the multiplier by λ.

Definition (attracting, superattracting, repelling, neutral orbit)

A periodic orbit $O^+(z_0)$ is
Remark

chain rule $\Rightarrow \lambda z_0 = \text{product of the derivatives of } f \text{ along the orbit}$
$\Rightarrow \lambda z_0$ is an invariant of $O^+(z_0)$ rather than the particular point z_0.
Whenever we discuss just one periodic orbit we will simply denote the multiplier by λ.

Definition (attracting, superattracting, repelling, neutral orbit)

A periodic orbit $O^+(z_0)$ is

- **attracting** if $0 < |\lambda| < 1$,
Remark

chain rule ⇒ $\lambda_{z_0} = \text{product of the derivatives of } f \text{ along the orbit}$
⇒ λ_{z_0} is an invariant of $\mathcal{O}^+(z_0)$ rather than the particular point z_0.
Whenever we discuss just one periodic orbit we will simply denote the multiplier by λ.

Definition (attracting, superattracting, repelling, neutral orbit)

A periodic orbit $\mathcal{O}^+(z_0)$ is
- **attracting** if $0 < |\lambda| < 1$,
- **superattracting** if $\lambda = 0$,

Remark

Chain rule ⇒ $\lambda z_0 = \text{product of the derivatives of } f \text{ along the orbit}$
⇒ λz_0 is an invariant of $\mathcal{O}^+(z_0)$ rather than the particular point z_0. Whenever we discuss just one periodic orbit we will simply denote the multiplier by λ.

Definition (attracting, superattracting, repelling, neutral orbit)

A periodic orbit $\mathcal{O}^+(z_0)$ is
- **attracting** if $0 < |\lambda| < 1$,
- **superattracting** if $\lambda = 0$,
- **repelling** if $|\lambda| > 1$, or
Remark

chain rule $\Rightarrow \lambda z_0 = \text{product of the derivatives of } f \text{ along the orbit}$
$\Rightarrow \lambda z_0$ is an invariant of $O^+(z_0)$ rather than the particular point z_0.
Whenever we discuss just one periodic orbit we will simply denote the multiplier by λ.

Definition (attracting, superattracting, repelling, neutral orbit)

A periodic orbit $O^+(z_0)$ is

- **attracting** if $0 < |\lambda| < 1$,
- **superattracting** if $\lambda = 0$,
- **repelling** if $|\lambda| > 1$, or
- **neutral** if $|\lambda| = 1$.
Remark

In the special case where the point at infinity is periodic under a rational map, \(f^m(\infty) = \infty \), this definition may be confusing.
Remark

In the special case where the point at infinity is periodic under a rational map, i.e. $f^m(\infty) = \infty$, this definition may be confusing. The multiplier λ is not equal to

$$\lim_{z \to \infty} (f^m)'(z)$$

but rather turns out to be equal to the reciprocal of this number.
Remark

In the special case where the point at infinity is periodic under a rational map, i.e. $f^m(\infty) = \infty$, this definition may be confusing. The multiplier λ is not equal to

$$\lim_{z \to \infty} (f^m)'(z)$$

but rather turns out to be equal to the reciprocal of this number. As examples, if $f(z) = 2z$, then ∞ is an attracting fixed point with multiplier $\lambda = \frac{1}{2}$, while if f is a polynomial of degree $d \geq 2$, then ∞ is a superattracting fixed point, with $\lambda = 0$.
Definition (basin of attraction)

\(\mathcal{O} \) attracting periodic orbit of period \(m \)
Definition (basin of attraction)

\(\mathcal{O} \) attracting periodic orbit of period \(m \)

basin of attraction

\[= \text{open set } \mathcal{A} \]
\[= \{ z \in \mathbb{C} \mid f^m(z), f^{2m}(z), \ldots \text{ converge towards some point of } \mathcal{O} \} \]
Definition (basin of attraction)

\(\mathcal{O} \) attracting periodic orbit of period \(m \)

basin of attraction

= open set \(\mathcal{A} \)

= \(\{ z \in \mathbb{C} \mid f^m(z), f^{2m}(z), \ldots \text{ converge towards some point of } \mathcal{O} \} \)

\(\mathbb{C} \) compact \(\Rightarrow \)
Definition (basin of attraction)

\(\mathcal{O} \) attracting periodic orbit of period \(m \)

basin of attraction

- open set \(\mathcal{A} \)
- \(\{ z \in \hat{\mathbb{C}} | f^m(z), f^{2m}(z), \ldots \text{ converge towards some point of } \mathcal{O} \} \)

\(\hat{\mathbb{C}} \) compact \(\Rightarrow \)

Lemma (Basins & repelling points)

Every attracting periodic orbit is contained in \(F_f \)
Definition (basin of attraction)

\(O \) attracting periodic orbit of period \(m \)

basin of attraction

= open set \(A \)

= \{ z \in \hat{\mathbb{C}} | f^m(z), f^{2m}(z), \ldots \text{ converge towards some point of } O \} \)

\(\hat{\mathbb{C}} \) compact \(\Rightarrow \)

Lemma (Basins & repelling points)

Every attracting periodic orbit is contained in \(F_f \)

*In fact the entire basin of attraction for an attracting periodic orbit is contained in \(F_f \)**
Definition (basin of attraction)

\(\mathcal{O} \) attracting periodic orbit of period \(m \)

basin of attraction

\[= \text{open set } \mathcal{A} \]

\[= \{ z \in \hat{\mathbb{C}} \mid f^m(z), f^{2m}(z), \ldots \text{ converge towards some point of } \mathcal{O} \} \]

\(\hat{\mathbb{C}} \) compact \(\Rightarrow \)

Lemma (Basins & repelling points)

Every attracting periodic orbit is contained in \(F_f \)

In fact the entire basin of attraction for an attracting periodic orbit is contained in \(F_f \)

However, every repelling periodic orbit is contained in \(J_f \)
Idea of the proof.

First consider a fixed point $z_0 = f(z_0)$ with multiplier λ.

If $|\lambda| > 1$, then no sequence of iterates of f can converge uniformly near z_0, for the first derivative of f at z_0 is λ, which diverges to infinity as $n \to \infty$.

On the other hand, if $|\lambda| < 1$, then choosing $|\lambda| < c < 1$ it follows from Taylor's Theorem that $|f(z) - z_0| \leq c|z - z_0|$ for z sufficiently close to $z_0 \Rightarrow$ the successive iterates of f, restricted to a small neighborhood, converge uniformly to the constant function $z \mapsto z_0$.

These statements for fixed points generalize immediately to periodic points, using Iteration Lemma which says $\forall k, Jf^k = Jf$ since a periodic point of f is just a fixed point of some iterate f^m.
Idea of the proof.

First consider a fixed point $z_0 = f(z_0)$ with multiplier λ. If $|\lambda| > 1$, then no sequence of iterates of f can converge uniformly near z_0, for the first derivative of f^n at z_0 is λ^n, which diverges to infinity as $n \to \infty$. On the other hand, if $|\lambda| < 1$, then choosing $|\lambda| < c < 1$ it follows from Taylor's Theorem that $|f(z) - z_0| \leq c |z - z_0|$ for z sufficiently close to $z_0 \Rightarrow$ the successive iterates of f, restricted to a small neighborhood, converge uniformly to the constant function $z \mapsto z_0$. These statements for fixed points generalize immediately to periodic points, using the Iteration Lemma which says $\forall k, Jf^k = Jf$ since a periodic point of f is just a fixed point of some iterate f^m.
Idea of the proof.

First consider a fixed point $z_0 = f(z_0)$ with multiplier λ.
If $|\lambda| > 1$, then no sequence of iterates of f can converge uniformly near z_0, for the first derivative of f^n at z_0 is λ^n, which diverges to infinity as $n \to \infty$.
On the other hand, if $|\lambda| < 1$, then choosing $|\lambda| < c < 1$ it follows from Taylor’s Theorem that

$$|f(z) - z_0| \leq c|z - z_0|$$

for z sufficiently close to $z_0 \Rightarrow$ the successive iterates of f, restricted to a small neighborhood, converge uniformly to the constant function $z \mapsto z_0$.
Idea of the proof.

First consider a fixed point $z_0 = f(z_0)$ with multiplier λ. If $|\lambda| > 1$, then no sequence of iterates of f can converge uniformly near z_0, for the first derivative of f^n at z_0 is λ^n, which diverges to infinity as $n \to \infty$.

On the other hand, if $|\lambda| < 1$, then choosing $|\lambda| < c < 1$ it follows from Taylor’s Theorem that

$$|f(z) - z_0| \leq c|z - z_0|$$

for z sufficiently close to $z_0 \Rightarrow$ the successive iterates of f, restricted to a small neighborhood, converge uniformly to the constant function $z \mapsto z_0$. The corresponding statement for any compact subset of the basin \mathcal{A} then follows easily.
Idea of the proof.

First consider a fixed point \(z_0 = f(z_0) \) with multiplier \(\lambda \).
If \(|\lambda| > 1 \), then no sequence of iterates of \(f \) can converge uniformly near \(z_0 \), for the first derivative of \(f^n \) at \(z_0 \) is \(\lambda^n \), which diverges to infinity as \(n \to \infty \).
On the other hand, if \(|\lambda| < 1 \), then choosing \(|\lambda| < c < 1 \) it follows from Taylor’s Theorem that
\[
|f(z) - z_0| \leq c|z - z_0|
\]
for \(z \) sufficiently close to \(z_0 \) ⇒ the successive iterates of \(f \), restricted to a small neighborhood, converge uniformly to the constant function \(z \mapsto z_0 \). The corresponding statement for any compact subset of the basin \(\mathcal{A} \) then follows easily. These statements for fixed points generalize immediately to periodic points, using Iteration Lemma which says
\[
\forall k, \ J_{f^k} = J_f
\]
since a periodic point of \(f \) is just a fixed point of some iterate \(f^m \).
The case of a neutral periodic point is much more difficult. One particularly important case is the following:

Definition (parabolic periodic point)

A periodic point $z_0 = f^n(z_0)$ is called parabolic if the multiplier λ at z_0 is equal to 1, yet f^n is not the identity map, or more generally if λ is a root of unity, yet no iterate of f is the identity.

Example

$f(z) = z^2 - 1$ has two fixed points, both with multiplier equal to -1.

However these do not count as parabolic points since $f \circ f = \text{id}$.

We must exclude such cases so that the following will be true.

Lemma (Parabolic Points)

Every parabolic periodic point belongs to J_f.

The case of a neutral periodic point is much more difficult. One particularly important case is the following:

Definition (parabolic periodic point)

A periodic point $z_0 = f^n(z_0)$ is called **parabolic** if the multiplier λ at z_0 is equal to 1, yet f^n is not the identity map, or more generally if λ is a root of unity, yet no iterate of f is the identity.
The case of a neutral periodic point is much more difficult. One particularly important case is the following:

Definition (parabolic periodic point)

A periodic point $z_0 = f^n(z_0)$ is called **parabolic** if the multiplier λ at z_0 is equal to 1, yet f^n is not the identity map, or more generally if λ is a root of unity, yet no iterate of f is the identity.

Example

$f(z) = \frac{z}{z-1}$ has two fixed points, both with multiplier equal to -1. However these do not count as parabolic points since $f \circ f = \text{id}$.
The case of a neutral periodic point is much more difficult. One particularly important case is the following:

Definition (parabolic periodic point)

A periodic point $z_0 = f^n(z_0)$ is called *parabolic* if the multiplier λ at z_0 is equal to 1, yet f^n is not the identity map, or more generally if λ is a root of unity, yet no iterate of f is the identity.

Example

$f(z) = \frac{z}{z-1}$ has two fixed points, both with multiplier equal to -1. However these do not count as parabolic points since $f \circ f = \text{id}$.

We must exclude such cases so that the following will be true.
The case of a neutral periodic point is much more difficult. One particularly important case is the following:

Definition (parabolic periodic point)

A periodic point $z_0 = f^n(z_0)$ is called **parabolic** if the multiplier λ at z_0 is equal to 1, yet f^n is not the identity map, or more generally if λ is a root of unity, yet no iterate of f is the identity.

Example

$f(z) = \frac{z}{z-1}$ has two fixed points, both with multiplier equal to -1. However these do not count as parabolic points since $f \circ f = \text{id}$.

We must exclude such cases so that the following will be true.

Lemma (Parabolic Points)

*Every parabolic periodic point belongs to J_f.***
Before proving it let us recall the following statement:

Theorem (Weierstrass Uniform Convergence Theorem)

\[\mathcal{U} \text{ open subset of } \mathbb{C} \]
Before proving it let us recall the following statement:

Theorem (Weierstrass Uniform Convergence Theorem)

\mathcal{U} open subset of \mathbb{C}

If a sequence of holomorphic functions $\{f_n: \mathcal{U} \to \mathbb{C}\}$ converges uniformly to the limit function f, then f itself is holomorphic.
Before proving it let us recall the following statement:

Theorem (Weierstrass Uniform Convergence Theorem)

Let \(U \) be an open subset of \(\mathbb{C} \).

If a sequence of holomorphic functions \(\{ f_n : U \to \mathbb{C} \} \) converges uniformly to the limit function \(f \), then \(f \) itself is holomorphic.

Furthermore, the sequence of derivatives \(\{ f'_n \} \) converges uniformly on any compact subset of \(U \) to the derivative \(f' \).
Before proving it let us recall the following statement:

Theorem (Weierstrass Uniform Convergence Theorem)

\(U \) open subset of \(\mathbb{C} \)

If a sequence of holomorphic functions \(\{f_n : U \to \mathbb{C}\} \) converges uniformly to the limit function \(f \), then \(f \) itself is holomorphic.

Furthermore, the sequence of derivatives \(\{f'_n\} \) converges uniformly on any compact subset of \(U \) to the derivative \(f' \).
Proof of Parabolic Points Lemma.
Proof of Parabolic Points Lemma.

Let \(w \) be a local uniformizing parameter, with \(w = 0 \) corresponding to the periodic point.
Proof of Parabolic Points Lemma.

Let w be a local uniformizing parameter, with $w = 0$ corresponding to the periodic point. Then some iterate f^m corresponds to a local mapping of the w-plane with power series expansion of the form

$$ w \mapsto w + a_q w^q + a_{q+1} w^{q+1} + \ldots \quad q \geq 2, a_q \neq 0 $$
Proof of Parabolic Points Lemma.

Let \(w \) be a local uniformizing parameter, with \(w = 0 \) corresponding to the periodic point. Then some iterate \(f^m \) corresponds to a local mapping of the \(w \)-plane with power series expansion of the form

\[
 w \mapsto w + a_q w^q + a_{q+1} w^{q+1} + \ldots \quad \text{where} \quad q \geq 2, \; a_q \neq 0
\]

It follows that \(f^{mk} \) corresponds to a power series

\[
 w \mapsto w + k a_q w^q + \ldots
\]
Proof of Parabolic Points Lemma.

Let w be a local uniformizing parameter, with $w = 0$ corresponding to the periodic point. Then some iterate f^m corresponds to a local mapping of the w-plane with power series expansion of the form

$$w \mapsto w + a_q w^q + a_{q+1} w^{q+1} + \ldots$$

$q \geq 2$, $a_q \neq 0$

It follows that f^{mk} corresponds to a power serie

$$w \mapsto w + k a_q w^q + \ldots$$

\Rightarrow (qth derivative of f^{mk} at 0) = $q ! \, k a_q$ which diverges to infinity as $k \to \infty$.

Proof of Parabolic Points Lemma.

Let w be a local uniformizing parameter, with $w = 0$ corresponding to the periodic point. Then some iterate f^m corresponds to a local mapping of the w-plane with power series expansion of the form

$$w \mapsto w + a_q w^q + a_{q+1} w^{q+1} + \ldots \quad q \geq 2, a_q \neq 0$$

It follows that f^{mk} corresponds to a power serie

$$w \mapsto w + ka_q w^q + \ldots$$

\Rightarrow $(q$th derivative of f^{mk} at $0) = q! \cdot ka_q$ which diverges to infinity as $k \to \infty$. no subsequence $\{f^{mk_j}\}$ can converge locally uniformly as $k_j \to \infty$ (Weierstrass Uniform Convergence Theorem). \qed
Lemma (J_f is not empty)

$f : \mathbb{C} \to \mathbb{C}$ rational map of degree ≥ 2
Lemma \((J_f \text{ is not empty})\)

\[f : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \text{ rational map of degree } \geq 2 \]

\(J_f \text{ is non vacuous}\)
Lemma (J_f is not empty)

$f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ rational map of degree ≥ 2

J_f is non vacuous

Idea of the proof.
Lemma (J_f is not empty)

$f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ rational map of degree ≥ 2

J_f is non vacuous

Idea of the proof.

J_f were vacuous \Rightarrow some sequence of iterates $\{f^{n_i}\}$ would converge, uniformly over the entire sphere $\hat{\mathbb{C}}$, to a holomorphic limit $g : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$. Here we are using the fact that normality is a local property.
Lemma (J_f is not empty)

$f : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ rational map of degree ≥ 2

J_f is non vacuous

Idea of the proof.

J_f were vacuous \Rightarrow some sequence of iterates $\{f^{n_j}\}$ would converge, uniformly over the entire sphere $\hat{\mathbb{C}}$, to a holomorphic limit $g : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$.

Here we are using the fact that normality is a local property. A standard topological argument would then show that $\deg f^{n_j} := \deg g$ for large j.
Lemma (J_f is not empty)

$f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ rational map of degree ≥ 2

J_f is non vacuous

Idea of the proof.

J_f were vacuous \Rightarrow some sequence of iterates $\{f^{n_j}\}$ would converge, uniformly over the entire sphere $\hat{\mathbb{C}}$, to a holomorphic limit $g : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$. Here we are using the fact that normality is a local property. A standard topological argument would then show that $\deg f^{n_j} := \deg g$ for large j (in fact if two maps f_j and g are sufficiently close that the spherical distance $\sigma(f_j(z), g(z))$ is uniformly less than the distance between antipodal points, then we can deform $f_j(z)$ to $g(z)$ along the unique shortest geodesic; hence these two maps are homotopic and have the same degree).
Lemma \((J_f\text{ is not empty})\)

\[f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \text{ rational map of degree } \geq 2 \]
\[J_f \text{ is non vacuous} \]

Idea of the proof.

\(J_f\) were vacuous \(\Rightarrow\) some sequence of iterates \(\{f^{n_j}\}\) would converge, uniformly over the entire sphere \(\hat{\mathbb{C}}\), to a holomorphic limit \(g : \hat{\mathbb{C}} \to \hat{\mathbb{C}}\). Here we are using the fact that normality is a local property. A standard topological argument would then show that \(\deg f^{n_j} :\!\!=\!\!= \deg g\) for large \(j\) (in fact if two maps \(f_j\) and \(g\) are sufficiently close that the spherical distance \(\sigma(f_j(z), g(z))\) is uniformly less than the distance between antipodal points, then we can deform \(f_j(z)\) to \(g(z)\) along the unique shortest geodesic ; hence these two maps are homotopic and have the same degree). But \(\deg f^n \neq \deg g\) for large \(n\), since

\[
\lim_{n \to \infty} \deg f^n = \lim_{n \to \infty} d^n = \infty.
\]
Definition (grand orbit)

Let $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$,
Definition (grand orbit)

Let $f : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$, $z \in \hat{\mathbb{C}}$
Definition (grand orbit)

Let $f : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$, $z \in \hat{\mathbb{C}}$

grand orbit of z under $f = \text{GO}(z, f) = \{ p \in \hat{\mathbb{C}} | \mathcal{O}^+(p) \cap \mathcal{O}^+(z) \neq \emptyset \}$
Definition (grand orbit)

Let \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \), \(z \in \hat{\mathbb{C}} \)

grand orbit of \(z \) under \(f = \text{GO}(z, f) = \{ p \in \hat{\mathbb{C}} \mid \mathcal{O}^+(p) \cap \mathcal{O}^+(z) \} \neq \emptyset \)

\(\Rightarrow \) \(z \) and \(p \) have the same grand orbit \(\iff f^k(z) = f^n(p) \) for some choice of \(k \geq 0 \) and \(n \geq 0 \).
Definition (grand orbit)

Let \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}, \ z \in \hat{\mathbb{C}} \)

grand orbit of \(z \) under \(f \) = \(\text{GO}(z, f) = \{ p \in \hat{\mathbb{C}} \mid \mathcal{O}^+(p) \cap \mathcal{O}^+(z) \neq \emptyset \} \)

\(\Rightarrow z \) and \(p \) have the same grand orbit \(\iff f^k(z) = f^n(p) \) for some choice of \(k \geq 0 \) and \(n \geq 0 \).

\(z \in \hat{\mathbb{C}} \) is **exceptional** under \(f \) if its grand orbit \(\text{GO}(z, f) \subset \hat{\mathbb{C}} \) is a finite set.
Definition (grand orbit)

Let \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}, \ z \in \hat{\mathbb{C}} \)

grand orbit of \(z \) under \(f = \text{GO}(z, f) = \{ p \in \hat{\mathbb{C}} | \mathcal{O}^+(p) \cap \mathcal{O}^+(z) \} \neq \emptyset \)

\(\Rightarrow \) \(z \) and \(p \) have the same grand orbit \(\iff f^k(z) = f^n(p) \) for some choice of \(k \geq 0 \) and \(n \geq 0 \).

\(z \in \hat{\mathbb{C}} \) is **exceptional** under \(f \) if its grand orbit \(\text{GO}(z, f) \subset \hat{\mathbb{C}} \) is a finite set.

By a **Riemann surface** \(S \) we mean a connected complex analytic manifold of complex dimension 1.
Let us recall the following statement:

Theorem (Montel Theorem)

Let S be a Riemann surface, F a collection of holomorphic maps from S to $\hat{\mathbb{C}}$, which omit three different values (i.e., assume that there are three distinct points a, b, c in $\hat{\mathbb{C}}$ so that $f(S) \subset \hat{\mathbb{C}} \setminus \{a, b, c\}$ for every $f \in F$). Then F is a normal family, i.e., $F \subset \text{Hol}(S, \hat{\mathbb{C}})$ is a compact set.

Using it one can prove the following statement:

Lemma (Exceptional points)

If $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is rational of degree ≥ 2, then the set E_f of exceptional points can have at most two elements. These exceptional points, if they exist, must always be superattracting periodic points of f and hence must belong to the F_f.

Let us recall the following statement:

Theorem (Montel Theorem)

A Riemann surface S is a compact set.

Using it one can prove the following statement:

Lemma (Exceptional points)

If $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is rational of degree ≥ 2, then the set E_f of exceptional points can have at most two elements. These exceptional points, if they exist, must always be superattracting periodic points of f and hence must belong to the F_f.
Let us recall the following statement:

Theorem (Montel Theorem)

Let S be a Riemann surface and \mathcal{F} be a collection of holomorphic maps from S to $\hat{\mathbb{C}}$ which omit three different values (i.e., assume that there are three distinct points a, b, c in $\hat{\mathbb{C}}$ so that $f(S) \subset \hat{\mathbb{C}} \setminus \{a, b, c\}$ for every $f \in \mathcal{F}$).

Using it one can prove the following statement:

Lemma (Exceptional points)

If $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is rational of degree ≥ 2, then the set E_f of exceptional points can have at most two elements. These exceptional points, if they exist, must always be superattracting periodic points of f and hence must belong to F_f.
Let us recall the following statement:

Theorem (Montel Theorem)

* S Riemann surface
* \mathcal{F} collection of holomorphic maps from S to $\hat{\mathbb{C}}$ which omit three different values (i.e. assume that there are three distinct points a, b, c in $\hat{\mathbb{C}}$ so that $f(S) \subset \hat{\mathbb{C}} \setminus \{a, b, c\}$ for every $f \in \mathcal{F}$) $\Rightarrow \mathcal{F}$ is a normal family, i.e. $\overline{\mathcal{F}} \subset \text{Hol}(S, \hat{\mathbb{C}})$ is a compact set.
Let us recall the following statement:

Theorem (Montel Theorem)

S Riemann surface

\mathcal{F} collection of holomorphic maps from S to $\hat{\mathbb{C}}$ which omit three different values (i.e. assume that there are three distinct points a, b, c in $\hat{\mathbb{C}}$ so that $f(S) \subset \hat{\mathbb{C}} \setminus \{a, b, c\}$ for every $f \in \mathcal{F}$) \Rightarrow \mathcal{F} is a normal family, i.e. $\overline{\mathcal{F}} \subset \text{Hol}(S, \hat{\mathbb{C}})$ is a compact set.

Using it one can prove the following statement:
Let us recall the following statement:

Theorem (Montel Theorem)

\(S \) Riemann surface
\(\mathcal{F} \) collection of holomorphic maps from \(S \) to \(\hat{\mathbb{C}} \) which omit three different values (i.e. assume that there are three distinct points \(a, b, c \) in \(\hat{\mathbb{C}} \) so that \(f(S) \subset \hat{\mathbb{C}} \setminus \{a, b, c\} \) for every \(f \in \mathcal{F} \)) \(\Rightarrow \mathcal{F} \) is a normal family, i.e. \(\overline{\mathcal{F}} \subset \text{Hol}(S, \hat{\mathbb{C}}) \) is a compact set.

Using it one can prove the following statement:

Lemma (Exceptional points)

If \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) is rational of degree \(\geq 2 \), then the set \(E_f \) of exceptional points can have at most two elements.
Let us recall the following statement:

Theorem (Montel Theorem)

Let S be a Riemann surface and \mathcal{F} be a collection of holomorphic maps from S to \(\widehat{\mathbb{C}} \) which omit three different values (i.e. assume that there are three distinct points a, b, c in \(\widehat{\mathbb{C}} \) such that $f(S) \subset \widehat{\mathbb{C}} \setminus \{a, b, c\}$ for every $f \in \mathcal{F}$). Then \mathcal{F} is a normal family, i.e. $\overline{\mathcal{F}} \subset \text{Hol}(S, \widehat{\mathbb{C}})$ is a compact set.

Using it one can prove the following statement:

Lemma (Exceptional points)

If $f : \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is rational of degree ≥ 2, then the set E_f of exceptional points can have at most two elements. These exceptional points, if they exist, must always be superattracting periodic points of f and hence must belong to the F_f.

Theorem (Transitivity)

Let $f : \mathbb{C} \to \mathbb{C}$ be a rational fraction of degree ≥ 2,

U contains the entire Julia set, i.e. $J_f \subset U$

U contains all but at most two points of \mathbb{C}, i.e. $\mathbb{C} \setminus \Delta \subset U$ with $\# \Delta \leq 2$

more precisely if V is sufficiently small, then U is the complement $\mathbb{C} \setminus E_f$ of the set of exceptional points.
Theorem (Transitivity)

Let \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) be a rational fraction of degree \(\geq 2 \), \(z \) be a point in \(J_f \),
Theorem (Transitivity)

Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational fraction of degree ≥ 2, z be a point in J_f, \mathcal{V} be a neighborhood of z,
Theorem (Transitivity)

Let \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) be a rational fraction of degree \(\geq 2 \), \(z \) be a point in \(J_f \), \(\mathcal{V} \) be a neighborhood of \(z \), \(\mathcal{U} = \bigcup_{n \in \mathbb{N}} f^n(\mathcal{V}) \).
Theorem (Transitivity)

Let $f : \mathbb{C} \to \mathbb{C}$ be a rational fraction of degree ≥ 2, z be a point in J_f, \mathcal{V} be a neighborhood of z, $\mathcal{U} = \bigcup_{n \in \mathbb{N}} f^n(\mathcal{V})$. Then

$\hat{\mathbb{C}} \setminus \Delta \subset \mathcal{U}$ with $\#\Delta \leq 2$.
Theorem (Transitivity)

Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational fraction of degree ≥ 2, z be a point in J_f, V be a neighborhood of z, $\mathcal{U} = \bigcup_{n \in \mathbb{N}} f^n(V)$.

Then

1. \mathcal{U} contains the entire Julia set, i.e. $J_f \subset \mathcal{U}$
Dynamics in one variable

Grand orbit and topology

Theorem (Transitivity)

Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational fraction of degree ≥ 2, z be a point in J_f, V be a neighborhood of z, $\mathcal{U} = \bigcup_{n \in \mathbb{N}} f^n(V)$.

Then

1. \mathcal{U} contains the entire Julia set, i.e. $J_f \subset \mathcal{U}$
2. \mathcal{U} contains all but at most two points of $\hat{\mathbb{C}}$, i.e. $\hat{\mathbb{C}} \setminus \Delta \subset \mathcal{U}$ with $\#\Delta \leq 2$
Theorem (Transitivity)

Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational fraction of degree ≥ 2, z be a point in J_f, \mathcal{V} be a neighborhood of z, $\mathcal{U} = \bigcup_{n \in \mathbb{N}} f^n(\mathcal{V})$.

Then

1. \mathcal{U} contains the entire Julia set, i.e. $J_f \subset \mathcal{U}$

2. \mathcal{U} contains all but at most two points of $\hat{\mathbb{C}}$, i.e. $\hat{\mathbb{C}} \setminus \Delta \subset \mathcal{U}$ with $\#\Delta \leq 2$

3. More precisely if \mathcal{V} is sufficiently small, then \mathcal{U} is the complement $\hat{\mathbb{C}} \setminus \mathcal{E}_f$ of the set of exceptional points.
Proof of Transitivity Theorem.

First remark that the complementary set $\tilde{C} \setminus U$ can contain at most two points.
Proof of Transitivity Theorem.

First remark that the complementary set $\hat{\mathbb{C}} \setminus \mathcal{U}$ can contain at most two points. For otherwise since $f(\mathcal{U}) \subset \mathcal{U}$ it would follow from Montel’s Theorem that \mathcal{U} must be contained in F_f which is impossible since $z \in \mathcal{U} \cap J_f$.
Proof of Transitivity Theorem.

First remark that the complementary set $\hat{\mathbb{C}} \setminus \mathcal{U}$ can contain at most two points. For otherwise since $f(\mathcal{U}) \subset \mathcal{U}$ it would follow from Montel’s Theorem that \mathcal{U} must be contained in F_f which is impossible since $z \in \mathcal{U} \cap J_f$. Again making use of the fact that $f(\mathcal{U}) \subset \mathcal{U}$ we see that any preimage of a point $z_1 \in \hat{\mathbb{C}} \setminus \mathcal{U}$ must itself belongs to the finite set $\hat{\mathbb{C}} \setminus \mathcal{U}$.
Proof of Transitivity Theorem.

First remark that the complementary set $\hat{C} \setminus U$ can contain at most two points. For otherwise since $f(U) \subset U$ it would follow from Montel’s Theorem that U must be contained in F_f which is impossible since $z \in U \cap J_f$. Again making use of the fact that $f(U) \subset U$ we see that any preimage of a point $z_1 \in \hat{C} \setminus U$ must itself belong to the finite set $\hat{C} \setminus U$. It follows by a counting argument that some iterated preimage of z_1 is periodic;
Proof of Transitivity Theorem.

First remark that the complementary set \(\hat{C} \setminus \mathcal{U} \) can contain at most two points. For otherwise since \(f(\mathcal{U}) \subset \mathcal{U} \) it would follow from Montel’s Theorem that \(\mathcal{U} \) must be contained in \(F_f \) which is impossible since \(z \in \mathcal{U} \cap J_f \). Again making use of the fact that \(f(\mathcal{U}) \subset \mathcal{U} \) we see that any preimage of a point \(z_1 \in \hat{C} \setminus \mathcal{U} \) must itself belongs to the finite set \(\hat{C} \setminus \mathcal{U} \). It follows by a counting argument that some iterated preimage of \(z_1 \) is periodic; hence \(z_1 \) itself is periodic and exceptional.
Proof of Transitivity Theorem.

First remark that the complementary set \(\hat{C} \setminus U \) can contain at most two points. For otherwise since \(f(U) \subset U \) it would follow from Montel’s Theorem that \(U \) must be contained in \(F_f \) which is impossible since \(z \in U \cap J_f \). Again making use of the fact that \(f(U) \subset U \) we see that any preimage of a point \(z_1 \in \hat{C} \setminus U \) must itself belongs to the finite set \(\hat{C} \setminus U \). It follows by a counting argument that some iterated preimage of \(z_1 \) is periodic; hence \(z_1 \) itself is periodic and exceptional. Since \(E_f \) is disjoint from \(J_f \) it follows that \(J_f \subset U \).
Proof of Transitivity Theorem.

First remark that the complementary set $\hat{C} \setminus U$ can contain at most two points. For otherwise since $f(U) \subset U$ it would follow from Montel’s Theorem that U must be contained in F_f which is impossible since $z \in U \cap J_f$. Again making use of the fact that $f(U) \subset U$ we see that any preimage of a point $z_1 \in \hat{C} \setminus U$ must itself belongs to the finite set $\hat{C} \setminus U$. It follows by a counting argument that some iterated preimage of z_1 is periodic; hence z_1 itself is periodic and exceptional. Since E_f is disjoint from J_f it follows that $J_f \subset U$. Finally if \mathcal{V} is small enough so that $\mathcal{V} \subset \hat{C} \setminus E_f$ it follows that $U = \hat{C} \setminus E_f$. \qed
As a consequence one has:
As a consequence one has:

Corollary (Julia set with interior)

\[f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \text{ rational fraction of degree } \geq 2 \]
As a consequence one has:

Corollary (Julia set with interior)

\[f : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \text{ rational fraction of degree } \geq 2 \]
\[J_f \neq \emptyset \Rightarrow J_f = \hat{\mathbb{C}} \]
As a consequence one has:

Corollary (Julia set with interior)

\[f : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \text{ rational fraction of degree } \geq 2 \]

\[\mathcal{J}_f \neq \emptyset \Rightarrow \mathcal{J}_f = \hat{\mathbb{C}} \]

Idea of the proof.

For if \(\mathcal{J}_f \) has an interior point \(z \) then choosing a neighborhood \(\mathcal{V} \subset \mathcal{J}_f \) of \(z \) the union \(\mathcal{U} \subset \mathcal{J}_f \) of forward images of \(\mathcal{V} \) is everywhere dense, \(\overline{\mathcal{U}} = \hat{\mathbb{C}} \).
Corollary (Basin Boundary = Julia set)

Let $A \subset \hat{\mathbb{C}}$ be the basin of attraction for some attracting periodic orbit.
Corollary (Basin Boundary=Julia set)

Let $A \subset \hat{\mathbb{C}}$ be the basin of attraction for some attracting periodic orbit $\Rightarrow \partial A = \overline{A} \setminus A$ is equal to J_f
Corollary (Basin Boundary=Julia set)

Let \(A \subset \hat{\mathbb{C}} \) be the basin of attraction for some attracting periodic orbit
\[\Rightarrow \partial A = \overline{A} \setminus A \text{ is equal to } J_f \]
Every connected component of \(F_f \) either coincides with some connected component of this basin \(A \) or else disjoint from \(A \).
Corollary (Basin Boundary=Julia set)

Let $A \subset \hat{\mathbb{C}}$ be the basin of attraction for some attracting periodic orbit $\Rightarrow \partial A = \overline{A} \setminus A$ is equal to J_f

Every connected component of F_f either coincides with some connected component of this basin A or else disjoint from A

Proof.

If \mathcal{V} is any neighborhood of a point of J_f then Transitivity Theorem implies that some $f^k(\mathcal{V})$ intersects A,

Corollary (Basin Boundary=Julia set)

Let \(A \subset \hat{\mathbb{C}} \) be the basin of attraction for some attracting periodic orbit
\[\Rightarrow \partial A = \overline{A} \setminus A \] is equal to \(J_f \)

Every connected component of \(F_f \) either coincides with some connected component of this basin \(A \) or else disjoint from \(A \)

Proof.

If \(\mathcal{V} \) is any neighborhood of a point of \(J_f \) then Transitivity Theorem implies that some \(f^k(\mathcal{V}) \) intersects \(A \), hence \(\mathcal{V} \) itself intersects \(A \). This proves that \(J_f \subset \overline{A} \).
Corollary (Basin Boundary=Julia set)

Let $A \subset \hat{\mathbb{C}}$ be the basin of attraction for some attracting periodic orbit
$\Rightarrow \partial A = \bar{A} \setminus A$ is equal to J_f

Every connected component of F_f either coincides with some connected component of this basin A or else disjoint from A

Proof.

If \mathcal{V} is any neighborhood of a point of J_f then Transitivity Theorem implies that some $f^k(\mathcal{V})$ intersects A, hence \mathcal{V} itself intersects A. This proves that $J_f \subset \bar{A}$.

But J_f is disjoint from A
Corollary (Basin Boundary=Julia set)

Let \(A \subset \hat{\mathbb{C}} \) be the basin of attraction for some attracting periodic orbit

\[\Rightarrow \partial A = \overline{A} \setminus A \text{ is equal to } J_f \]

Every connected component of \(F_f \) either coincides with some connected component of this basin \(A \) or else disjoint from \(A \)

Proof.

If \(V \) is any neighborhood of a point of \(J_f \) then Transitivity Theorem implies that some \(f^k(V) \) intersects \(A \), hence \(V \) itself intersects \(A \). This proves that \(J_f \subset \overline{A} \).

But \(J_f \) is disjoint from \(A \) so \(J_f \subset \partial A \).
Corollary (Basin Boundary = Julia set)

Let $A \subset \hat{\mathbb{C}}$ be the basin of attraction for some attracting periodic orbit
⇒ $\partial A = \overline{A} \setminus A$ is equal to J_f

Every connected component of F_f either coincides with some connected component of this basin A or else disjoint from A

Proof.

If \mathcal{V} is any neighborhood of a point of J_f then Transitivity Theorem implies that some $f^k(\mathcal{V})$ intersects A, hence \mathcal{V} itself intersects A. This proves that $J_f \subset \overline{A}$.

But J_f is disjoint from A so $J_f \subset \partial A$.

If \mathcal{V} is a neighborhood of a point of ∂A, then any limit of iterates $f^k|_\mathcal{V}$ must have a jump discontinuity between A and ∂A, ...
Corollary (Basin Boundary=Julia set)

Let $A \subset \hat{\mathbb{C}}$ be the basin of attraction for some attracting periodic orbit
$\Rightarrow \partial A = \overline{A} \setminus A$ is equal to J_f

Every connected component of F_f either coincides with some connected component of this basin A or else disjoint from A

Proof.

If V is any neighborhood of a point of J_f then Transitivity Theorem implies that some $f^k(V)$ intersects A, hence V itself intersects A. This proves that $J_f \subset \overline{A}$.

But J_f is disjoint from A so $J_f \subset \partial A$.

If V is a neighborhood of a point of ∂A, then any limit of iterates $f^k|_V$ must have a jump discontinuity between A and ∂A, hence $\partial A \subset J_f$.
Corollary (Basin Boundary=Julia set)

Let \(A \subset \hat{\mathbb{C}} \) be the basin of attraction for some attracting periodic orbit
\[\Rightarrow \partial A = \overline{A} \setminus A \text{ is equal to } J_f \]
Every connected component of \(F_f \) either coincides with some connected component of this basin \(A \) or else disjoint from \(A \)

Proof.

If \(\mathcal{V} \) is any neighborhood of a point of \(J_f \) then Transitivity Theorem implies that some \(f^k(\mathcal{V}) \) intersects \(A \), hence \(\mathcal{V} \) itself intersects \(A \). This proves that \(J_f \subset \overline{A} \).
But \(J_f \) is disjoint from \(A \) so \(J_f \subset \partial A \).
If \(\mathcal{V} \) is a neighborhood of a point of \(\partial A \), then any limit of iterates \(f^k|_\mathcal{V} \) must have a jump discontinuity between \(A \) and \(\partial A \), hence \(\partial A \subset J_f \).
Any connected Fatou component which intersects \(A \) must coincide with some component of \(A \) since it cannot intersect \(\partial A \).

\qed
Corollary (Iterated preimages are dense)

Let $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ rational fraction of degree ≥ 2,

Corollary (Iterated preimages are dense)

Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ rational fraction of degree ≥ 2, let z_0 be any point of J_f
Corollary (Iterated preimages are dense)

Let \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) rational fraction of degree \(\geq 2 \), let \(z_0 \) be any point of \(J_f \) \(\Rightarrow \) the set of all iterated preimages of \(z_0 \)

\[
\{ z \in \hat{\mathbb{C}} | \exists n \geq 0 \text{ s.t. } f^n(z) = z_0 \}
\]

is everywhere dense in \(J_f \)
Corollary (Iterated preimages are dense)

Let \(f : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \) rational fraction of degree \(\geq 2 \), let \(z_0 \) be any point of \(J_f \) \(\Rightarrow \) the set of all iterated preimages of \(z_0 \)

\[
\{ z \in \hat{\mathbb{C}} | \exists \ n \geq 0 \text{ s.t. } f^n(z) = z_0 \}
\]

is everywhere dense in \(J_f \)

Proof.

\(z_0 \not\in E_f \) so Transitivity Theorem implies that every point \(z_1 \in J_f \) can be approximated arbitrarily closely by points \(z \) whose forward orbits contain \(z_0 \).
Corollary (No isolated points)

Let \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) rational fraction of degree \(\geq 2 \),
Corollary (No isolated points)

Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ rational fraction of degree ≥ 2,
$\Rightarrow J_f$ has no isolated point.
Corollary (No isolated points)

Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ rational fraction of degree ≥ 2,
⇒ J_f has no isolated point.

Proof.

First remark that J_f must be an infinite set.
Corollary (No isolated points)

Let \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) rational fraction of degree \(\geq 2 \),
\(\Rightarrow J_f \) has no isolated point.

Proof.

First remark that \(J_f \) must be an infinite set. For if \(J_f \) were finite it would consist of grand orbit finite points: contradiction with Exceptional points Lemma.
Corollary (No isolated points)

Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ *rational fraction of degree* ≥ 2,
⇒ J_f *has no isolated point.*

Proof.

First remark that J_f must be an infinite set. For if J_f were finite it would consist of grand orbit finite points: contradiction with Exceptional points Lemma.
⇒ J_f contains at least one limit point z_0.
Corollary (No isolated points)

Let \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) rational fraction of degree \(\geq 2 \),
\(\Rightarrow \) \(J_f \) has no isolated point.

Proof.

First remark that \(J_f \) must be an infinite set. For if \(J_f \) were finite it would consist of grand orbit finite points: contradiction with Exceptional points Lemma.
\(\Rightarrow \) \(J_f \) contains at least one limit point \(z_0 \). The iterated preimages of \(z_0 \) form a dense set of nonisolated points in \(J_f \).
Corollary (No isolated points)

Let $f: \mathbb{C} \to \mathbb{C}$ rational fraction of degree ≥ 2, $
\Rightarrow J_f$ has no isolated point.

Proof.

First remark that J_f must be an infinite set. For if J_f were finite it would consist of grand orbit finite points: contradiction with Exceptional points Lemma.
$
\Rightarrow J_f$ contains at least one limit point z_0. The iterated preimages of z_0 form a dense set of nonisolated points in J_f. $
$
Corollary (Julia components)

Let $f: \mathbb{C} \to \mathbb{C}$ rational fraction of degree ≥ 2,

Corollary (No isolated points)

Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ rational fraction of degree ≥ 2,
$\Rightarrow J_f$ has no isolated point.

Proof.

First remark that J_f must be an infinite set. For if J_f were finite it would consist of grand orbit finite points: contradiction with Exceptional points Lemma.

$\Rightarrow J_f$ contains at least one limit point z_0. The iterated preimages of z_0 form a dense set of nonisolated points in J_f.

Corollary (Julia components)

Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ rational fraction of degree ≥ 2,
J_f is either connected or else has uncountably many connected components
Corollary (Topological Transitivity)

*For a generic choice of the point \(z \in J_f \) the forward orbit

\[
O^+(z) = \{ z, f(z), f^2(z), \ldots \}
\]

is everywhere dense in \(J_f \).
Corollary (Topological Transitivity)

For a generic choice of the point $z \in J_f$ the forward orbit

$$\mathcal{O}^+(z) = \{z, f(z), f^2(z), \ldots\}$$

is everywhere dense in J_f

Proof.

For any integer $j > 0$ one can cover J_f by finitely many open sets \mathcal{V}_{jk} of diameter less than $1/j$.
Corollary (Topological Transitivity)

For a generic choice of the point \(z \in J_f \) the forward orbit

\[
\mathcal{O}^+(z) = \{ z, f(z), f^2(z), \ldots \}
\]

is everywhere dense in \(J_f \)

Proof.

For any integer \(j > 0 \) one can cover \(J_f \) by finitely many open sets \(\mathcal{V}_{jk} \) of diameter less than \(1/j \).

Let \(\mathcal{U}_{jk} = \bigcup_n f^{-n}(\mathcal{V}_{jk}) \).
Corollary (Topological Transitivity)

For a generic choice of the point \(z \in J_f \) the forward orbit

\[
\mathcal{O}^+(z) = \{ z, f(z), f^2(z), \ldots \}
\]

is everywhere dense in \(J_f \)

Proof.

For any integer \(j > 0 \) one can cover \(J_f \) by finitely many open sets \(V_{jk} \) of diameter less than \(1/j \).
Let \(U_{jk} = \bigcup_n f^{-n}(V_{jk}) \).
From Corollary "Iterated preimages are dense" one gets \(\overline{U_{jk}} \cap J_f = J_f \),
Corollary (Topological Transitivity)

For a generic choice of the point $z \in J_f$ the forward orbit

$$O^+(z) = \{ z, f(z), f^2(z), \ldots \}$$

is everywhere dense in J_f

Proof.

For any integer $j > 0$ one can cover J_f by finitely many open sets V_{jk} of diameter less than $1/j$.

Let $U_{jk} = \bigcup_n f^{-n}(V_{jk})$.

From Corollary ”Iterated preimages are dense” one gets $\overline{U_{jk} \cap J_f} = J_f$, i.e. $U_{jk} \cap J_f$ is a dense open subset of J_f.
Corollary (Topological Transitivity)

For a generic choice of the point $z \in J_f$ the forward orbit

$$\mathcal{O}^+(z) = \{z, f(z), f^2(z), \ldots\}$$

is everywhere dense in J_f

Proof.

For any integer $j > 0$ one can cover J_f by finitely many open sets \mathcal{V}_{jk} of diameter less than $1/j$.

Let $\mathcal{U}_{jk} = \bigcup_n f^{-n}(\mathcal{V}_{jk})$.

From Corollary ”Iterated preimages are dense” one gets $\mathcal{U}_{jk} \cap J_f = J_f$, i.e. $\mathcal{U}_{jk} \cap J_f$ is a dense open subset of J_f. If z belongs to the intersection of these dense open sets, then $\mathcal{O}^+(z)$ intersects every one of the \mathcal{V}_{jk}
Corollary (Topological Transitivity)

For a generic choice of the point \(z \in J_f \) *the forward orbit*

\[
\mathcal{O}^+(z) = \{ z, f(z), f^2(z), \ldots \}
\]

is everywhere dense in \(J_f \)

Proof.

For any integer \(j > 0 \) one can cover \(J_f \) by finitely many open sets \(\mathcal{V}_{jk} \) of diameter less than \(1/j \).

Let \(\mathcal{U}_{jk} = \bigcup_n f^{-n}(\mathcal{V}_{jk}) \).

From Corollary "Iterated preimages are dense" one gets \(\mathcal{U}_{jk} \cap J_f = J_f \), i.e. \(\mathcal{U}_{jk} \cap J_f \) is a dense open subset of \(J_f \). If \(z \) belongs to the intersection of these dense open sets, then \(\mathcal{O}^+(z) \) intersects every one of the \(\mathcal{V}_{jk} \) and hence is everywhere dense in \(J_f \). \(\square \)
References:

- Wikipedia.