Non-asymptotic bound for stochastic averaging

S. Gadat and F. Panloup

Toulouse School of Economics

PGMO Days, November, 14, 2017

I - Introduction

- I 1 Motivations
- I 2 Optimization
- I 3 Stochastic Optimization
- I 4 No novelty in this talk, as usual !

II Well known algorithms

- II 1 Stochastic Gradient Descent
- II 2 Heavy Ball with Friction
- II 3 Polyak-Ruppert Averaging
- II 4 In this talk

III Polyak averaging

- III 1 Almost sure convergence
- III 2 Strong convexity?
- III 3 Averaging analysis
- III 4 Linearisation and moments
- III 5 Averaging Main result

I - 1 Optimization - Motivations : Statistical problems

Objective : Solve

 $\arg\min_{\theta\in\mathbb{R}^d}f(\theta)$

- Motivation : minimization originates from a statistical estimation problem
- M-estimation point of view :

$$\hat{\theta}_N := \arg\min f_N(\theta)$$

where f_N is a stochastic approximation of the target function f.

- · Among other, statistical problems like :
 - ▶ Supervised regression $(X_i, Y_i)_{1 \leq i \leq N}$: Sum of squares in linear models

$$f_N(\theta) = \sum_{i=1}^N \|Y_i - \langle X_i, \theta \rangle\|^2.$$

▶ Supervised classification $(X_i, Y_i)_{1 \leq i \leq N}$: Logistic regression

$$f_N(\theta) = \sum_{i=1}^N \log \left(1 + \exp(-Y_i \langle X_i, \theta \rangle)\right).$$

- Quantile estimation
- Cornerstone of the talk :

$$\frac{1}{N}\mathbb{E}[f_N(\theta)] = f(\theta) \quad \text{or} \quad \frac{1}{N}\mathbb{E}[\nabla f_N(\theta)] = \nabla f(\theta)$$

I - 1 Optimization - Motivations : large scale estimation problems ?

- A lot of observations that may be observed recursively : large n
- A large dimensional scaling : large d
 Goal : manageable from a computational point of view.
- We handle in this talk only smooth problems :

f is assumed to be differentiable \implies no composite problems

- Noisy/stochastic minimization :
 - ▶ the *n* observations are i.i.d. and are gathered in a channel of information
 - they feed the computation of the target function f_N
- · Each iteration : use only one arrival of the channel (picked up uniformly)

$$f_N(\theta) = \sum_{i=1}^N \ell_{(X_i,Y_i)}(\theta)$$

I - 2 Optimization - convexity

▹ Smooth minimization C² problem

$$\arg\min_{\mathbb{R}^d} f.$$

Generally, f is also assumed to be strongly convex/convex Quadratic loss/Logistic loss :

- Benchmark first order deterministic methods (with ∇f) :
 - when f is assumed to be convex, quadratic rates (NAGD) :

$O(1/t^2)$

when f is strongly convex, linear rates (NAGD) :

$O(e^{-\rho t})$

Minimax paradigm : worst case in a class of functions within horizon t

I - 3 Stochastic Optimization - convexity

▹ Smooth minimization C² problem

$$\arg\min_{\mathbb{R}^d} f$$
.

Generally, f is also assumed to be convex/strongly convex Quadratic loss/Logistic loss :

- First order stochastic methods (with $\nabla f + \xi$ with $\mathbb{E}[\xi] = 0$):
 - when f is convex (Nemirovski-Yudin 83) :

$O(1/\sqrt{t})$

▶ when *f* is strongly convex (Cramer-Rao lower bound) :

O(1/t)

Minimax paradigm : worst case in a class of functions within horizon t

I - 3 Stochastic Optimization - convexity Smooth minimization C^2 problem

 $\theta^{\star} := \arg\min_{\mathbb{R}^d} f.$

Build a recursive optimization method $(\theta_n)_{n \ge 1}$ with noisy gradients and ... Current hot questions ?

- Beyond convexity/strong convexity ?
 Example : recursive quantile estimation problem.
 Use of KL functional inequality ? Multiple wells situations ?
- Adaptivity of the method ? Independent of some unknown quantities : $D^2 f(\theta^*)$, $\min_x \min Sp(D^2 f(x))$.
- Non asymptotic bound ? Exact/sharp constant ?

$$\forall n \geq \mathbb{N}$$
 $\mathbb{E} \| \theta_n - \theta^{\star} \|^2 \leq \frac{Tr(V)}{n} + A/n^{1+\epsilon},$

Tr(V) : incompressible variance (Cramer-Rao lower bound.)

Large deviations ?

$$\forall n \ge \mathbb{N} \quad \forall t \ge 0 \qquad \mathbb{P}\left(\|\theta_n - \theta^\star\| \ge b(n) + t\right) \le e^{-R(t,n)}$$

• \mathbb{L}^p loss?

$$\mathbb{E}\|\theta_n - \theta^\star\|^{2p} \leqslant \frac{A_p}{n^p} + B_p/n^{p+\epsilon}$$

I - 4 No novelty in this talk, as usual !

We will consider some well known methods in this talk (!!)

First order Markov chain stochastic approximation :

• Stochastic Gradient Descent (SGD for short) : $(\theta_n)_{n \ge 1}$

Second order Markov chain stochastic approximation :

- Polyak Averaging : $(\overline{\theta}_n)_{n \ge 1}$
- Healy/Ball Milth Ridder (HBR)

I - Introduction

- 1 Motivations
- 2 Optimization
- 3 Stochastic Optimization
- I 4 No novelty in this talk, as usual !

II Well known algorithms

- II 1 Stochastic Gradient Descent
- II 2 Heavy Ball with Friction
- II 3 Polyak-Ruppert Averaging
- II 4 In this talk

III Polyak averaging

- III 1 Almost sure convergence
- III 2 Strong convexity ?
- III 3 Averaging analysis
- III 4 Linearisation and moments
- III 5 Averaging Main result

II - 1 Stochastic Gradient Descent (SGD)

- Robbins-Monro algorithm 1951.
- Idea : use the steepest descent to produce a first order recursive method. Homogeneization all along the iterations
- Build the sequence $(\theta_n)_{n \ge 1}$ as follows :

•
$$\theta_0 \in \mathbb{R}^d$$

• Iterate $\theta_{n+1} = \theta_n - \gamma_{n+1}g_n(\theta_n)$ with

 $g_n(\theta_n) = \nabla f(\theta_n) + \xi_n,$

where $(\xi_n)_{n \ge 1}$ is a sequence of independent zero mean noise :

$$\mathbb{E}[\xi_n \,|\, \mathcal{F}_n] = 0,$$

where $\mathcal{F}_n = \sigma(\theta_0, \ldots, \theta_n)$.

Typical state of the art result

Theorem

Assume f is strongly convex $SC(\alpha)$:

• If $\gamma_n = \gamma n^{-\beta}$ with $\beta \in (0, 1)$ then $\mathbb{E}[\|\theta_n - \theta^\star\|^2] \leq C_\alpha \gamma_n$ • If $\gamma_n = \gamma n^{-1}$ with $\gamma \alpha > 1/2$, then $\mathbb{E}[\|\theta_n - \theta^\star\|^2] \leq C_\alpha n^{-1}$

Pros : easy analysis, avoid local traps with probability 1 (Pemantle 1990, Benaïm 1996, Brandiere-Duflo 1996)

Cons : Not adaptive, no sharp inequality, no KL settings, ...

II - 2 Heavy Ball with Friction

 Produce a second order discrete recursion from the HBF ODE of Polyak (1987) and Antipin (1994) :

$$\ddot{x}_t + a_t \dot{x}_t + \nabla f(x_t) = 0 \qquad a_t = \frac{2\alpha + 1}{t} \quad \text{or} \quad a_t = a > 0$$

Mimic the displacement of a ball rolling on the graph of the function f.

 Up to a time scaling modification, equivalent system to the NAGD (CEG09, SBC12, AD17) that may be rewritten as

$$X'_t = -Y_t$$
 and $Y'_t = r(t)(\nabla f(X_t) - Y_t)dt$ with $r(t) = \frac{\alpha + 1}{t}$ or $r(t) = r > 0$.

Stochastic version, two sequences :

 $X_{n+1} = X_n - \gamma_{n+1}Y_n$ and $Y_{n+1} = Y_n + r_n\gamma_{n+1}(g_n(X_n) - Y_n)$

II - 3 Polyak-Ruppert Averaging

- Not novel (Ruppert 1988, Polyak-Juditsky 1992)
- ▶ Start from a SGD sequence $(\theta_n)_{n \ge 1}$ with slow step sizes

 $\theta_{n+1} = \theta_n - \gamma_{n+1}g_n(\theta_n)$ with $\gamma_n = \gamma n^{-\beta}, \beta \in (0, 1).$

Idea : Cesaro averaging all along the sequence

$$\overline{\theta}_n = \frac{1}{n} \sum_{j=1}^n \theta_j$$

Typical state of the art result

Theorem (PJ92)

If f is strongly convex $SC(\alpha)$ and $C_L^1(\mathbb{R}^d)$ and $\beta \in (1/2, 1)$:

$$\sqrt{n}(\overline{\theta}_n - \theta^*) \longrightarrow N(0, V)$$
 as $n \longrightarrow +\infty$.

V possesses an optimal trace and $(\overline{\theta}_n)_{n \ge 1}$ attains the Cramer-Rao lower bound asymptotically.

Theorem (BM11,B14,G16)

For several particular cases of convex minimization problems (logistic, least squares, quantile with "convexity") :

$$\mathbb{E}\|\overline{\theta}_n - \theta^\star\|^2 \leqslant \frac{C}{n}$$

II - 4 In this talk

We propose two contributions :

- Relax the convexity assumption (Kurdyka- Łojasiewicz inequality)?
 - \hookrightarrow very mild assumption on the data/problem

 \hookrightarrow convex semi-algebric, recursive quantile, logistic regression, strongly convex functions, \ldots

 \hookrightarrow Incidentally easy \mathbb{L}^{p} consistency rate of SGD(!)

- Plug-in it in the Ruppert-Polyak averaging procedure ?
 - \hookrightarrow Sharp non asymptotic minimax \mathbb{L}^2 rate for $\overline{\theta}_n$
 - → Spectral explanation of "why it works ?"

I - Introduction

- 1 Motivations
- 2 Optimization
- 3 Stochastic Optimization
- I 4 No novelty in this talk, as usual !

II Well known algorithms

- II 1 Stochastic Gradient Descent
- II 2 Heavy Ball with Friction
- II 3 Polyak-Ruppert Averaging
- II 4 In this talk

III Polyak averaging

- III 1 Almost sure convergence
- III 2 Strong convexity ?
- III 3 Averaging analysis
- III 4 Linearisation and moments
- III 5 Averaging Main result

III - 1 Almost sure convergence

- Use a SGD sequence $(\theta_n)_{n \ge 1}$ with step size $(\gamma_n)_{n \ge 1}$.
- Averaging

$$\overline{\theta}_n = rac{1}{n} \sum_{k=1}^n heta_k, \quad n \ge 1$$

Free result :

If unique minimizer of f (what is assumed below from now on), the a.s. convergence of $(\overline{\theta}_n)_{n \ge 1}$ comes from the one of $(\theta_n)_{n \ge 1}$. Goals :

- Optimality
- Non asymptotic behaviour
- Adaptivity
- Weaken the convexity assumption

III - 2 Strong convexity ?

- Historically, plays a great role in optimization/stochastic optimization
- Generally : needs a strong convexity assumption to derive efficient rates
- Otherwise : each particular case is dealt with carefully

Definition (KL type inequality \mathbf{H}_{φ})

 $D^2 f(\theta^*)$ invertible, an increasing asymptotically concave function ϕ exists s.t.

$$\exists 0 < m < M \quad \forall x \in \mathbb{R}^d \setminus \{\theta^\star\} : \qquad m \leqslant \varphi'(f(x)) |\nabla f(x)|^2 + \frac{|\nabla f(x)|^2}{f(x)} \leqslant M.$$

Implicitly :

- Unique critical point
- Typically sub-quadratic situation (C¹_L)
- Desingularizes the function f near θ^*
- ► *f* does not need to be convex

If for a
$$\beta \in [0, 1]$$
:

$$\liminf_{|x| \to +\infty} f(x)^{-\beta} |\nabla f(x)|^2 > 0 \quad \text{and} \quad \limsup_{|x| \to +\infty} f(x)^{-\beta} |\nabla f(x)|^2 < +\infty.$$

Then, \mathbf{H}_{φ} holds with $\varphi(x) = (1 + |x|^2)^{\frac{1-\beta}{2}}$.

III - 2 Strong convexity?

Few references :

- Seminal contributions of Kurdyka (1998) & Łojasiewicz (1958),
- Error bounds in many situations (see Bolte *et al.* linear convergence rate of the FoBa proximal splitting for the lasso)
- Many many functions satisfy KL : convex, coercive, semi-algebraic

For us, it makes it possible to handle :

- Recursive least squares problems ($\varphi = 1$) and $\beta = 1$
- Online logistic regression and $\beta = 0$
- Recursive quantile problem and $\beta = 0$

Last assumption (for the sake of readability)

Assumption (Martingale noise)

$$\sup_{n\geq 1}\|\xi_{n+1}\|<+\infty$$

Restrictive for the sake of readability. Can be largely weakened with additional technicalities

III - 3 Averaging analysis Assume $\theta^{\star} = 0$

Linearisation : Introduce $Z_n = (\theta_n, \overline{\theta}_n)$ and

$$Z_{n+1} = \begin{pmatrix} I_d - \gamma_{n+1}\Lambda_n & 0\\ \frac{1}{n+1}(I_d - \gamma_{n+1}\Lambda_n) & (1 - \frac{1}{n+1})I_d \end{pmatrix} Z_n + \gamma_{n+1} \begin{pmatrix} \xi_{n+1}\\ \frac{\xi_{n+1}}{n+1} \end{pmatrix},$$

where $\Lambda_n = \int_0^1 D^2 f(t\theta_n) dt$. Replace formally Λ_n by $D^2 f(\theta^*)$ Key matrix : for any $\mu > 0$ and any integer *n* :

$$E_{\mu,n} := \begin{pmatrix} 1 - \gamma_{n+1}\mu & 0\\ \frac{1 - \mu \gamma_{n+1}}{n+1} & 1 - \frac{1}{n+1} \end{pmatrix}$$

Obvious eigenvalues and ... $(0, \overline{\theta}_n)$ is living on the "good" eigenvector;) Conclusion 1:

- We shall expect a behaviour of $(\overline{\theta}_n)_{n \ge 1}$ independent from $D^2 f(\theta^*)$
- We shall expect a rate of n^{-1}

Difficulties :

 $E_{\mu,n}$ is not symmetric \implies non orthonormal eigenvectors $E_{\mu,n}$ varies with n

Requires a careful understanding of the eigenvectors variations

IV - 3 Averaging analysis : linear case

Linear case :

How to produce a sharp upper bound? Derive an inequality of the form

$$\mathbb{E}[\|\widetilde{Z}_{n+1}\|^2 \,|\, \mathcal{F}_n] \leq \left(1 - \frac{1}{n+1} + \delta_{n,\beta}\right)^2 \|\widetilde{Z}_n\|^2 + \frac{Tr(D^2f(\theta^\star))}{(n+1)^2}$$

 $\delta_{n,\beta}$ is an error term : variation of the eigenvectors from *n* to *n* + 1. If $\delta_{n,\beta}$ is small enough, then we obtain

$$\mathbb{E}[\|\widetilde{Z}_n\|^2] \leq \frac{Tr(D^2f(\theta^*))}{n} + \underbrace{\epsilon_{n,\beta}}_{:=O(n^{-(1+\upsilon_\beta)})}$$

Linearisation :

We need to replace Λ_n by $D^2 f(\theta^*)$ and we are done !

III - 4 Averaging analysis : cost of the linearisation

- We need to replace Λ_n by $D^2 f(\theta^*)$
- ▶ Needs some preliminary controls on the SGD $(\theta_n)_{n \ge 1}$ (moments)
- Known state of the art results when f SC or in particular situations

Theorem

For $\beta \in [0, 1]$, under \mathbf{H}_{φ} , a collection of constants C_p exists such that

$$\mathbb{E}\left[\left\|\theta_n - \theta^\star\right\|^{2p}\right] \leqslant C_p \gamma_n^p$$

Key argument : define a Lyapunov function :

$$V_p(heta) = f(heta)^p e^{\varphi(f(heta))}$$

and prove a mean reverting effect property (without any recursion) :

$$\forall n \in \mathbb{N}^{\star} \qquad \mathbb{E}\left[V_p(\theta_{n+1}) \mid \mathcal{F}_n\right] \leqslant \left(1 - \frac{\alpha}{2}\gamma_{n+1} + c_1\gamma_{n+1}^2\right)V_p(\theta_n) + c_2\{\gamma_{n+1}\}^{p+1}.$$

Remarks : Important role of φ ! Painful second order Taylor expansion . . .

III - 5 Averaging - Main result

We can state our main result with $\beta \in (1/2, 1), \gamma_n = \gamma_1 n^{-\beta}$:

Theorem

Under \mathbf{H}_{φ} , a constant *C* exists such that

$$\forall n \in \mathbb{N}^{\star} \qquad \mathbb{E}\left[\|\overline{\theta}_n - \theta^{\star}\|^2\right] \leqslant \frac{Tr(V)}{n} + Cn^{-\{(\beta+1/2)\wedge(2-\beta)\}}.$$

The "optimal" choice $\beta = 3/4$ satisfies the upper bound :

$$\forall n \in \mathbb{N}^{\star}$$
 $\mathbb{E}\left[\|\overline{\theta}_n - \theta^{\star}\|^2\right] \leq \frac{Tr(V)}{n} + Cn^{-5/4}$

- Non asymptotic
- Optimal variance term (Cramer-Rao lower bound)
- Adaptive to the unknown value of the Hessian
- Only requires invertibility of $D^2 f(\theta^*)$
- $\beta = 3/4$ no real understanding on this optimality (just computations)
- Second order term seems to be of the good size

Conclusion

Conclusions :

- It/stochastic/cases//Pluppert/Plolyak/is/fat/better/than Niesterov//HBF systems
- May be shown to be optimal for quite general functions with a unique minimizer
- · Conclusions may be different when dealing with multiple wells situations
- > Tight bounds for recursive quantile, logistic regression, linear models,...

Developments :

- ▶ Sharp large deviation on $(\overline{\theta}_n)_{n \ge 1}$? Good idea to use the spectral representation.
- Moments ? Other losses ?
- Non-smooth situations ?

Thank you for your attention !

Optimal non-asymptotic bound of the Ruppert-Polyak averaging without strong convexity, with F. Panloup, 2017