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I - 1 Optimization - Motivations : Statistical problems

» Objective : Solve

arg min f(0)
OeR

» Motivation : minimization originates from a statistical estimation problem
» M-estimation point of view :
Oy := argmin fy(6)

where fy is a stochastic approximation of the target function f.
» Among other, statistical problems like :
» Supervised regression (X;, Yi)1<i<ny : Sum of squares in linear models

N
fu(0) = Y 1Yi = X3, 0.
i=1
» Supervised classification (X;, Yi)1<i<n : Logistic regression

N
(o) = Z log (1 4 exp(—Yi(X;, 6)).

i=1
» Quantile estimation
» Cornerstone of the talk :
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I - 1 Optimization - Motivations : large scale estimation problems ?

» A lot of observations that may be observed recursively : large n

» A large dimensional scaling : large d
Goal : manageable from a computational point of view.

» We handle in this talk only smooth problems :
f is assumed to be differentiable = no composite problems

(

» Noisy/stochastic minimization :

> the n observations are i.i.d. and are gathered in a channel of information
» they feed the computation of the target function fy

» Each iteration : use only one arrival of the channel (picked up uniformly)

N

fN<9) = Z E(X,‘,Y,‘) (9)

i=1



| - 2 Optimization - convexity

» Smooth minimization C? problem

argminf.
R4

Generally, f is also assumed to be strongly convex/convex

Quaderatic loss/Logistic loss
0]

Ao

m-Ay m m+ A,

Quadratic loss function

¥

Loss —— Logistic regression
— SVM

AdaBoost

—\
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» Benchmark first order deterministic methods (with V) :
» when f is assumed to be convex, quadratic rates (NAGD) :

o(1/r%)

» when f is strongly convex, linear rates (NAGD) :

0(87/)’)

» Minimax paradigm : worst case in a class of functions within horizon ¢



| - 3 Stochastic Optimization - convexity

» Smooth minimization C? problem

arg minf.
R4

Generally, f is also assumed to be convex/strongly convex

Quadratic loss/Logistic loss
L)

Ay

m-Ny mn m+ A,

Quadratic loss function

¥

Loss = Logistic regression
— SVM
AdaBoost

»f
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> First order stochastic methods (with Vf + £ with E[¢] = 0) :
» when f is convex (Nemirovski-Yudin 83) :

o(1/v1)

» when f is strongly convex (Cramer-Rao lower bound) :

o(1/1)

» Minimax paradigm : worst case in a class of functions within horizon ¢



| - 3 Stochastic Optimization - convexity
Smooth minimization C> problem

0* := argminf.
Rd

Build a recursive optimization method (6, ). with noisy gradients and ...
Current hot questions ?

>

v

v

Beyond convexity/strong convexity ?
Example : recursive quantile estimation problem.
Use of KL functional inequality ? Multiple wells situations ?

Adaptivity of the method ?
Independent of some unknown quantities : D°f(0*), min, min Sp(D*f (x).

Non asymptotic bound ? Exact/sharp constant ?

(

Vn=N  E|6,—6" < + A/t

Tr(V) :incompressible variance (Cramer-Rao lower bound.)
Large deviations ?

V=N Viz=0  P(|6,— 0] =b(n)+1) < e *0M
I’ loss ? A
E[6, — 0|7 < =2 +Bp/np+f



| - 4 No novelty in this talk, as usual !

We will consider some well known methods in this talk (!!)

First order Markov chain stochastic approximation :
» Stochastic Gradient Descent (SGD for short) : (6,)n>1

=

Second order Markov chain stochastic approximation :
» Polyak Averaging : (0,)n>1
> HEEN IBAN AN Friclieh (HBFY
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Il - 1 Stochastic Gradient Descent (SGD)

» Robbins-Monro algorithm 1951.

» Idea : use the steepest descent to produce a first order recursive
method. Homogeneization all along the iterations

» Build the sequence (6,).>1 as follows :
> 90 € ]Rd
> lterate 6,41 = 61 — Vur18n(6n) With
811(911> = vf(en) + 5717
where (&,),>1 is a sequence of independent zero mean noise :
]E[gn | ]:n] = 07
where F, = o (6o, ..., 0h).
» Typical state of the art result
Theorem
Assume f is strongly convex SC(«) :
> Ify, = yn~? with g € (0,1) then E[||6, — 0*|?] <
> My, = yn~ ! withya > 12, then E[||0, — 0*|?] < Con™!

Pros : easy analysis, avoid local traps with probability 1 (Pemantle 1990,
Benaim 1996, Brandiere-Duflo 1996)
Cons : Not adaptive, no sharp inequality, no KL settings, ...



Il - 2 Heavy Ball with Friction
» Produce a second order discrete recursion from the HBF ODE of Polyak
(1987) and Antipin (1994) :
200+ 1

..)&t + at]-C; + Vf(xt) =0 ar = P

or a;=a>0

» Mimic the displacement of a ball rolling on the graph of the function f.

» Up to a time scaling modification, equivalent system to the NAGD
(CEGO09, SBC12, AD17) that may be rewritten as

a+1

X, =Y, and Y/ =r(t)(VFf(X,)—Y,)dt with r(r) = or r(t)=r>0.

t
» Stochastic version, two sequences :

XIH»I = Xn - ﬂ/nJrIYU and Y71+l = Yn + FnYnt1 (gn (Xn) - Yn)



II - 3 Polyak-Ruppert Averaging
» Not novel (Ruppert 1988, Polyak-Juditsky 1992)
» Start from a SGD sequence (0,),>1 with slow step sizes

0n+l = en - ’YVH»lgn(en) W|th Yn = ’Vniﬁ,ﬁ € (0, 1)
» Idea : Cesaro averaging all along the sequence

_ 1<
0,1:;];9]-

» Typical state of the art result
Theorem (PJ92)
Iff is strongly convex SC(c) and CL(RY) and 8 € (1/2,1) :
Vn(0, — ") — N(0,V) as n— +o0.

V possesses an optimal trace and (6,).> attains the Cramer-Rao lower
bound asymptotically.
Theorem (BM11,B14,G16)

For several particular cases of convex minimization problems (logistic, least
squares, quantile with “convexity”) :

a

E[f, - 6" <

n



Il - 4 In this talk

We propose two contributions :

>

v

Relax the convexity assumption (Kurdyka- tojasiewicz inequality) ?

— very mild assumption on the data/problem

— convex semi-algebric, recursive quantile, logistic regression, strongly
convex functions, ...

— Incidentally easy I consistency rate of SGD(!)

Plug-in it in the Ruppert-Polyak averaging procedure ?
— Sharp non asymptotic minimax L’ rate for 6,
— Spectral explanation of “why it works ?”



Il Polyak averaging
Il - 1 Almost sure convergence
Il - 2 Strong convexity ?
Il - 3 Averaging analysis
Il - 4 Linearisation and moments
Il - 5 Averaging - Main result



[l - 1 AlImost sure convergence

» Use a SGD sequence (6.)n>1 With step size (7n)n>1.
» Averaging

_ 1 n
0, =~ 0/(, n>=1

Free result :

If unique minimizer of f (what is assumed below from now on), the a.s.
convergence of (8,).>1 comes from the one of (6,).>1.

Goals :

» Optimality

> Non asymptotic behaviour

» Adaptivity

» Weaken the convexity assumption



[l - 2 Strong convexity ?

» Historically, plays a great role in optimization/stochastic optimization
» Generally : needs a strong convexity assumption to derive efficient rates
» Otherwise : each particular case is dealt with carefully

Definition (KL type inequality H,,)
Df(6*) invertible, an increasing asymptotically concave function ¢ exists s.t.

J0<m<M VreRNO}:  m< S (F0))VIP + 'V]f((x)” <M
Implicitly : Graph of the extension &
» Unique critical point '
» Typically sub-quadratic situation (C}) w(r)
» Desingularizes the function f near 6* os // Affine extension
» f does not need to be convex graph of ¢
; 7

Ifforage0,1]:
hmlnff( Y PIVF)P >0 and limsupf(x) ?|VF(x)]* < +o0.

[x[— x| > +00

Then, H., holds with ¢ (x) = (1 + |x[) ="



[l - 2 Strong convexity ?

Few references :
» Seminal contributions of Kurdyka (1998) & tojasiewicz (1958),

» Error bounds in many situations (see Bolte et al. linear convergence rate
of the FoBa proximal splitting for the lasso)

» Many many functions satisfy KL : convex, coercive, semi-algebraic
For us, it makes it possible to handle :

» Recursive least squares problems (p = 1) and g = 1

» Online logistic regression and 8 = 0

» Recursive quantile problem and 8 = 0
Last assumption (for the sake of readability)

Assumption (Martingale noise)

Sup €41 < +00

n=1

Restrictive for the sake of readability.
Can be largely weakened with additional technicalities



[l - 3 Averaging analysis Assume 6* = 0

Linearisation : Introduce Z, = (6,,6,) and

I(/ - ’ny»lAn 0 £n+l
Zn = Zn“l‘ n 7
- <ni1<ldvn+lAn> (1= g | 2 7wt | o ]

where A, = §; D*f(t0,)dt. Replace formally A, by D*f(6*)
Key matrix : for any ¢ > 0 and any integer n :

L= g1 0
Eyn = ( 1=yt -/
n+1 n+1

Obvious eigenvalues and ... (0,8, is living on the “good” eigenvector ;)
Conclusion 1 :

» We shall expect a behaviour of (6,).>1 independent from Df(6*)
» We shall expect a rate of n™!

Difficulties :

E, . is not symmetric = non orthonormal eigenvectors

E, ., varies with n

Requires a careful understanding of the eigenvectors variations




IV - 3 Averaging analysis : linear case

Linear case :
How to produce a sharp upper bound ? Derive an inequality of the form
~ 1 250 Tr(D(0%)
E Zn : n < 1 T (sn Zn RN
12l 17 < (1= o 80 ) 12+ TS
dn,g iS @n error term : variation of the eigenvectors fromnto n + 1.
If 9,5 is small enough, then we obtain

S o THD(0)
E[Z < 7O o,
——
=0~ (+vs))

Linearisation :
We need to replace A, by D*f(*) and we are done !



[Il - 4 Averaging analysis : cost of the linearisation

» We need to replace A, by D*f(6*)
> Needs some preliminary controls on the SGD (6,),>1 (moments)
» Known state of the art results when f SC or in particular situations

Theorem
For 3 € [0, 1], under H,, a collection of constants C, exists such that

E (6. — 0" "] < G

Key argument : define a Lyapunov function :
V,(6) = £(0)e?V )
and prove a mean reverting effect property (without any recursion) :
Vne N E[V,(0u1) | Fa] < (1 - %%H + Cl%fﬂ) Vp(0n) + c2{yui }H.

Remarks :
Important role of ¢!
Painful second order Taylor expansion ...



[l - 5 Averaging - Main result

We can state our main result with 5 € (1/2,1),4, = vin= " :
Theorem
UnderH,, a constant C exists such that
wmeN  E[f, 0] < (V) |yt B1m7 -8
n

The “optimal” choice 3 = 3/4 satisfies the upper bound :

VneN* E [u@n - a*ﬂ <) | gy
n

» Non asymptotic

» Optimal variance term (Cramer-Rao lower bound)

» Adaptive to the unknown value of the Hessian

» Only requires invertibility of D*f(6*)

» 8 = 3/4 no real understanding on this optimality (just computations)
» Second order term seems to be of the good size



Conclusion

Conclusions :

- W/ NG EHAGLIE [CHSEE] TRUBPa PO/ 18/ TAf/DEtté Thar NEsterovHBE
By &S

» May be shown to be optimal for quite general functions with a unique
minimizer

» Conclusions may be different when dealing with multiple wells situations

» Tight bounds for recursive quantile, logistic regression, linear models,. ..

Developments :

» Sharp large deviation on (6,),> ? Good idea to use the spectral
representation.

> Moments ? Other losses ?

» Non-smooth situations ?

Thank you for your attention !

Optimal non-asymptotic bound of the Ruppert-Polyak averaging without strong
convexity, with F. Panloup, 2017
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