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I - 1 Optimization - Motivations : Statistical problems
§ Objective : Solve

arg min
θPRd

f pθq

§ Motivation : minimization originates from a statistical estimation problem
§ M-estimation point of view :

θ̂N :“ arg min fNpθq

where fN is a stochastic approximation of the target function f .
§ Among other, statistical problems like :

§ Supervised regression pXi, Yiq1ďiďN : Sum of squares in linear models

fNpθq “
N
ÿ

i“1

}Yi ´ xXi, θy}
2.

§ Supervised classification pXi, Yiq1ďiďN : Logistic regression

fNpθq “
N
ÿ

i“1

log p1` expp´YixXi, θyq .

§ Quantile estimation
§ Cornerstone of the talk :

1
N
ErfNpθqs“f pθq or

1
N
Er∇fNpθqs“∇f pθq



I - 1 Optimization - Motivations : large scale estimation problems ?

§ A lot of observations that may be observed recursively : large n
§ A large dimensional scaling : large d

Goal : manageable from a computational point of view.
§ We handle in this talk only smooth problems :

f is assumed to be differentiable ùñ no composite problems

§ Noisy/stochastic minimization :
§ the n observations are i.i.d. and are gathered in a channel of information
§ they feed the computation of the target function fN

§ Each iteration : use only one arrival of the channel (picked up uniformly)

fNpθq “
N
ÿ

i“1

`pXi,Yiqpθq



I - 2 Optimization - convexity

§ Smooth minimization C2 problem

arg min
Rd

f .

Generally, f is also assumed to be strongly convex/convex
Quadratic loss/Logistic loss :

§ Benchmark first order deterministic methods (with ∇f ) :
§ when f is assumed to be convex, quadratic rates (NAGD) :

Op1{t2q

§ when f is strongly convex, linear rates (NAGD) :

Ope´ρtq

§ Minimax paradigm : worst case in a class of functions within horizon t



I - 3 Stochastic Optimization - convexity

§ Smooth minimization C2 problem

arg min
Rd

f .

Generally, f is also assumed to be convex/strongly convex
Quadratic loss/Logistic loss :

§ First order stochastic methods (with ∇f ` ξ with Erξs “ 0) :
§ when f is convex (Nemirovski-Yudin 83) :

Op1{
?

tq

§ when f is strongly convex (Cramer-Rao lower bound) :

Op1{tq

§ Minimax paradigm : worst case in a class of functions within horizon t



I - 3 Stochastic Optimization - convexity
Smooth minimization C2 problem

θ‹ :“ arg min
Rd

f .

Build a recursive optimization method pθnqně1 with noisy gradients and ...
Current hot questions ?

§ Beyond convexity/strong convexity ?
Example : recursive quantile estimation problem.
Use of KL functional inequality ? Multiple wells situations ?

§ Adaptivity of the method ?
Independent of some unknown quantities : D2f pθ‹q,minx min SppD2f pxq.

§ Non asymptotic bound ? Exact/sharp constant ?

@n ě N E}θn ´ θ
‹
}

2
ď

TrpVq
n

` A{n1`ε,

TrpVq : incompressible variance (Cramer-Rao lower bound.)
§ Large deviations ?

@n ě N @t ě 0 P p}θn ´ θ
‹
} ě bpnq ` tq ď e´Rpt,nq

§ Lp loss ?
E}θn ´ θ

‹
}

2p
ď

Ap

np ` Bp{np`ε



I - 4 No novelty in this talk, as usual !

We will consider some well known methods in this talk ( ! !)

First order Markov chain stochastic approximation :

§ Stochastic Gradient Descent (SGD for short) : pθnqně1

Second order Markov chain stochastic approximation :
§ Polyak Averaging : pθnqně1

§ //////////////////////////////////////Heavy Ball with Friction (HBF)
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II - 1 Stochastic Gradient Descent (SGD)

§ Robbins-Monro algorithm 1951.
§ Idea : use the steepest descent to produce a first order recursive

method. Homogeneization all along the iterations
§ Build the sequence pθnqně1 as follows :

§ θ0 P Rd

§ Iterate θn`1 “ θn ´ γn`1gnpθnq with

gnpθnq “ ∇f pθnq ` ξn,

where pξnqně1 is a sequence of independent zero mean noise :

Erξn |Fns “ 0,

where Fn “ σpθ0, . . . , θnq.

§ Typical state of the art result

Theorem
Assume f is strongly convex SCpαq :

§ If γn “ γn´β with β P p0, 1q then Er}θn ´ θ‹}2s ď Cαγn
§ If γn “ γn´1 with γα ą 1{2, then Er}θn ´ θ‹}2s ď Cαn´1

Pros : easy analysis, avoid local traps with probability 1 (Pemantle 1990,
Benaı̈m 1996, Brandiere-Duflo 1996)
Cons : Not adaptive, no sharp inequality, no KL settings, . . .



II - 2 Heavy Ball with Friction
§ Produce a second order discrete recursion from the HBF ODE of Polyak

(1987) and Antipin (1994) :

:xt ` at 9xt `∇f pxtq “ 0 at “
2α` 1

t
or at “ a ą 0

§ Mimic the displacement of a ball rolling on the graph of the function f .

§ Up to a time scaling modification, equivalent system to the NAGD
(CEG09, SBC12, AD17) that may be rewritten as

X1t “ ´Yt and Y 1t “ rptqp∇f pXtq´Ytqdt with rptq “
α` 1

t
or rptq “ r ą 0.

§ Stochastic version, two sequences :

Xn`1 “ Xn ´ γn`1Yn and Yn`1 “ Yn ` rnγn`1pgnpXnq ´ Ynq



II - 3 Polyak-Ruppert Averaging
§ Not novel (Ruppert 1988, Polyak-Juditsky 1992)
§ Start from a SGD sequence pθnqně1 with slow step sizes

θn`1 “ θn ´ γn`1gnpθnq with γn “ γn´β , β P p0, 1q.

§ Idea : Cesaro averaging all along the sequence

θn “
1
n

n
ÿ

j“1

θj

§ Typical state of the art result

Theorem (PJ92)
If f is strongly convex SCpαq and C1

LpRd
q and β P p1{2, 1q :

?
npθn ´ θ

‹
q ÝÑ Np0,Vq as n ÝÑ `8.

V possesses an optimal trace and pθnqně1 attains the Cramer-Rao lower
bound asymptotically.

Theorem (BM11,B14,G16)
For several particular cases of convex minimization problems (logistic, least
squares, quantile with ”convexity”) :

E}θn ´ θ
‹
}

2
ď

C
n



II - 4 In this talk

We propose two contributions :

§ Relax the convexity assumption (Kurdyka- Łojasiewicz inequality) ?
ãÑ very mild assumption on the data/problem
ãÑ convex semi-algebric, recursive quantile, logistic regression, strongly
convex functions, . . .
ãÑ Incidentally easy Lp consistency rate of SGD( !)

§ Plug-in it in the Ruppert-Polyak averaging procedure ?
ãÑ Sharp non asymptotic minimax L2 rate for θn

ãÑ Spectral explanation of “why it works ?”
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III - 1 Almost sure convergence

§ Use a SGD sequence pθnqně1 with step size pγnqně1.
§ Averaging

θn “
1
n

n
ÿ

k“1

θk, n ě 1

Free result :
If unique minimizer of f (what is assumed below from now on), the a.s.
convergence of pθnqně1 comes from the one of pθnqně1.
Goals :

§ Optimality
§ Non asymptotic behaviour
§ Adaptivity
§ Weaken the convexity assumption



III - 2 Strong convexity ?
§ Historically, plays a great role in optimization/stochastic optimization
§ Generally : needs a strong convexity assumption to derive efficient rates
§ Otherwise : each particular case is dealt with carefully

Definition (KL type inequality Hϕ)
D2f pθ‹q invertible, an increasing asymptotically concave function φ exists s.t.

D 0 ă m ă M @x P Rd
ztθ‹u : m ď ϕ1pf pxqq|∇f pxq|2 `

|∇f pxq|2

f pxq
ď M.

Implicitly :
§ Unique critical point
§ Typically sub-quadratic situation (C1

L)
§ Desingularizes the function f near θ‹

§ f does not need to be convex

If for a β P r0, 1s :

lim inf
|x|Ñ`8

f pxq´β |∇f pxq|2 ą 0 and lim sup
|x|Ñ`8

f pxq´β |∇f pxq|2 ă `8.

Then, Hϕ holds with ϕpxq “ p1` |x|2q
1´β

2 .



III - 2 Strong convexity ?

Few references :
§ Seminal contributions of Kurdyka (1998) & Łojasiewicz (1958),
§ Error bounds in many situations (see Bolte et al. linear convergence rate

of the FoBa proximal splitting for the lasso)
§ Many many functions satisfy KL : convex, coercive, semi-algebraic

For us, it makes it possible to handle :
§ Recursive least squares problems (ϕ “ 1) and β “ 1
§ Online logistic regression and β “ 0
§ Recursive quantile problem and β “ 0

Last assumption (for the sake of readability)

Assumption (Martingale noise)

sup
ně1
}ξn`1} ă `8

Restrictive for the sake of readability.
Can be largely weakened with additional technicalities



III - 3 Averaging analysis Assume θ‹ “ 0

Linearisation : Introduce Zn “ pθn, θnq and

Zn`1 “

˜

Id ´ γn`1Λn 0
1

n`1 pId ´ γn`1Λnq p1´ 1
n`1 qId

¸

Zn ` γn`1

˜

ξn`1
ξn`1
n`1

¸

,

where Λn “
ş1

0 D2f ptθnqdt. Replace formally Λn by D2f pθ‹q
Key matrix : for any µ ą 0 and any integer n :

Eµ,n :“

˜

1´ γn`1µ 0
1´µγn`1

n`1 1´ 1
n`1

¸

.

Obvious eigenvalues and ... p0, θnq is living on the “good” eigenvector ;)
Conclusion 1 :

§ We shall expect a behaviour of pθnqně1 independent from D2f pθ‹q
§ We shall expect a rate of n´1

Difficulties :
Eµ,n is not symmetric ùñ non orthonormal eigenvectors
Eµ,n varies with n
Requires a careful understanding of the eigenvectors variations



IV - 3 Averaging analysis : linear case

Linear case :
How to produce a sharp upper bound ? Derive an inequality of the form

Er}rZn`1}
2
|Fns ď

ˆ

1´
1

n` 1
` δn,β

˙2

}rZn}
2
`

TrpD2f pθ‹qq
pn` 1q2

δn,β is an error term : variation of the eigenvectors from n to n` 1.
If δn,β is small enough, then we obtain

Er}rZn}
2
s ď

TrpD2f pθ‹qq
n

` εn,β
loomoon

:“Opn´p1`υβqq

Linearisation :
We need to replace Λn by D2f pθ‹q and we are done !



III - 4 Averaging analysis : cost of the linearisation

§ We need to replace Λn by D2f pθ‹q
§ Needs some preliminary controls on the SGD pθnqně1 (moments)
§ Known state of the art results when f SC or in particular situations

Theorem
For β P r0, 1s, under Hϕ, a collection of constants Cp exists such that

E
”

}θn ´ θ
‹
}

2p
ı

ď Cpγ
p
n

Key argument : define a Lyapunov function :

Vppθq “ f pθqpeϕpf pθqq

and prove a mean reverting effect property (without any recursion) :

@n P N‹ E rVppθn`1q |Fns ď

´

1´
α

2
γn`1 ` c1γ

2
n`1

¯

Vppθnq ` c2tγn`1u
p`1.

Remarks :
Important role of ϕ !
Painful second order Taylor expansion . . .



III - 5 Averaging - Main result

We can state our main result with β P p1{2, 1q, γn “ γ1n´β :

Theorem
Under Hϕ, a constant C exists such that

@n P N‹ E
”

}θn ´ θ
‹
}

2
ı

ď
TrpVq

n
` Cn´tpβ`1{2q^p2´βqu.

The “optimal” choice β “ 3{4 satisfies the upper bound :

@n P N‹ E
”

}θn ´ θ
‹
}

2
ı

ď
TrpVq

n
` Cn´5{4.

§ Non asymptotic
§ Optimal variance term (Cramer-Rao lower bound)
§ Adaptive to the unknown value of the Hessian
§ Only requires invertibility of D2f pθ‹q
§ β “ 3{4 no real understanding on this optimality (just computations)
§ Second order term seems to be of the good size



Conclusion

Conclusions :

§ //In//////////////stochastic/////////cases,////////////////////Ruppert-Polyak///is////far////////better///////than //////////////////Nesterov/HBF
//////////systems

§ May be shown to be optimal for quite general functions with a unique
minimizer

§ Conclusions may be different when dealing with multiple wells situations
§ Tight bounds for recursive quantile, logistic regression, linear models,. . .

Developments :

§ Sharp large deviation on pθnqně1 ? Good idea to use the spectral
representation.

§ Moments ? Other losses ?
§ Non-smooth situations ?

Thank you for your attention !

Optimal non-asymptotic bound of the Ruppert-Polyak averaging without strong
convexity, with F. Panloup, 2017
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