Global Optimization of binary polynomial programs

Sourour Elloumi, Amélie Lambert, Arnaud Lazare

CEDRIC - CNAM UMA - ENSTA

PGMO Days November 14th, 2017

Plan

Introduction

- 2 Convex quadratic reformulation
- 3 Convex polynomial reformulation

4 Numerical results

Introduction

We are interested in solving the following problem:

$$(P) \begin{cases} \min f(x) \\ \text{s.t.} \\ x_i \in \{0,1\} \quad i = 1, ..., n \end{cases}$$

where f is a polynomial with n binary variables. (P) is NP-hard whenever $deg(f) \ge 2$.

Difficulties come from

- Non-convexity of f
- Integer variables

Only a few efficient algorithms exist to find the global minimum of a mixed-integer non-convex polynomial:

- Some are based on a hierarchy of relaxations (Moment/SOS) [Lasserre, GloptiPoly, 2003]
- Others use reformulation/relaxation techniques before using a Branch and Bound

Only a few efficient algorithms exist to find the global minimum of a mixed-integer non-convex polynomial:

- Some are based on a hierarchy of relaxations (Moment/SOS) [Lasserre, GloptiPoly, 2003]
- Others use reformulation/relaxation techniques before using a Branch and Bound

Convex reformulation

- The continuous relaxation of (P) is not necessarily convex
- We want an equivalent reformulation of (P) such as its continuous relaxation is convex
- Possibly lift (P) in a higher dimensional space
- Idea: Choose the best reformulation among a family of "convex" reformulations (continous relaxation bound)
- 2 equivalent convex reformulations

Convex quadratic reformulation

Convex quadratic reformulation

Example

Let us consider the following program:

$$(Ex) \begin{cases} \min 5x_4x_3x_2 - 8x_1 \\ \text{s.t.} \\ x_i \in \{0, 1\} \\ i=1, \dots, 4 \end{cases}$$

We want to find a quadratic reformulation of (Ex) in a higher dimensional space

Example - Quadratization

$$(Ex) \begin{cases} \min 5x_4x_3x_2 - 8x_1 \\ \text{s.t.} \\ x_i \in \{0, 1\} \\ (Exquad) \end{cases} \begin{cases} \min 5x_5x_2 - 8x_1 \\ \text{s.t.} \\ x_5 \le x_4 \\ x_5 \le x_3 \\ x_5 \ge x_3 + x_4 - 1 \end{cases}$$

- 5 variables (1 new variable for each monomial of degree 3)
- Up to $\alpha 2$ new variables for each monomial of degree α
- 4 constraints $(g_5(x) \ge 0)$

 $\begin{aligned} x_5 &\geq 0 \\ x_1, x_2, x_3, x_4, x_5 &\in \{0, 1\} \end{aligned}$

Quadratic reformulation

 \longrightarrow We found a quadratic reformulation (QP) of (P) in a higher dimension

 $\longrightarrow (QP) \iff (P)$

$$(QP) \begin{cases} \min f(x) = \sum_{i} \sum_{j} q_{ij} x_{i} x_{j} + \sum_{i} c_{i} x_{i} \\ \text{s.t.} \\ g_{j}(x) \ge 0 \quad j = n + 1, ..., m \\ x_{i} \in \{0, 1\} \quad i = 1, ..., m \end{cases}$$

Quadratic convex reformulation

 \rightarrow We want to find a convexification using the identity $x_i^2 = x_i$

 \longrightarrow We want to compute $\sigma \in \mathbb{R}^n$ to find a convex reformulation f_σ of f

$$(QP_{\sigma}) \begin{cases} \min f_{\sigma}(x) = \sum_{i} \sum_{j} q_{ij} x_{i} x_{j} + \sum_{i} c_{i} x_{i} + \sum_{i} \sigma_{i} (x_{i}^{2} - x_{i}) \\ \text{s.t.} \\ g_{j}(x) \ge 0 \qquad j = n + 1, ..., m \\ x_{i} \in \{0, 1\} \qquad i = 1, ..., m \end{cases}$$

 \longrightarrow How to compute a "good" σ ?

PSD based convexification

Theorem (MIQCR, 2012)

$$(PSD_D) \begin{cases} \min f(X, x) = \sum_{i} \sum_{j} q_{ij} X_{ij} + \sum_{i} c_{i} x_{i} \\ s.t. \\ g_{j}(x) \ge 0 \qquad j = n + 1, ..., m \\ X_{ii} = x_{i} \qquad i = 1, ..., m \\ X - xx^{T} \succeq 0 \\ X \in S^{m}, x \in \mathbb{R}^{m} \end{cases}$$
(1)

Possible values of σ_i are the optimal values of the dual variables associated with constraint (1).

$$\rightarrow Q + diag(\sigma) \succeq 0$$

Summary of the quadratization method

- Find a quadratization (*QP*) of (*P*). Moving from a *n*-dimensional space to a *m*-dimensional space
- Solve (*PSD_D*) to compute values of *σ* and find a convexification of (*QP*)
- Solve (QP_{σ}) using a Branch and Bound. At each node we solve a convex quadratic relaxation

Convex polynomial reformulation

Convex polynomial reformulation

Idea - Equivalent polynomial reformulation

 \longrightarrow We want to reformulate f in a convex polynomial with the same degree

 \longrightarrow Idea: Find a perturbation of the Hessian matrix H(x) to make it positive semidefinite (PSD) for all $x \in [0, 1]^n$

 \longrightarrow Method:

• Let
$$\lambda \in \mathbb{R}^n$$
 and $f_{\lambda}(x) = f(x) - \sum_i \lambda_i (x_i^2 - x_i)$

• $f(x) = f_{\lambda}(x), \forall x \in \{0,1\}^n$

• We search for λ such as f_{λ} is convex over $[0,1]^n$

Equivalent polynomial reformulation

 \longrightarrow We obtain the following convex reformulation of (*P*):

$$(P) \iff (P_{\lambda}) \begin{cases} \min f(x) - \sum_{i} \lambda_{i}(x_{i}^{2} - x_{i}) \\ \text{s.t.} \\ x_{i} \in \{0, 1\} \qquad i = 1, \dots, n \end{cases}$$

 \longrightarrow Both problems are equivalent and have the same degree and the same variables

 \longrightarrow We want to compute λ such as f_{λ} is convex

Hessian matrix and approximation

- Goal: Find λ such as f_{λ} is convex
- Let $H_{\lambda}(x)$ be the Hessian matrix of f_{λ} , $H_{\lambda}(x) = H(x) diag(\lambda)$
- We want λ such as $\forall x \in [0,1]^n, \ H_{\lambda}(x) \succeq 0$
- Method
 - 1 Include H(x) in an interval matrix C
 - 2) Find λ so that $\forall M \in C, M diag(\lambda) \succeq 0$

Interval matrices

Definition (Interval matrix)

An interval matrix C is a matrix whose elements are interval numbers.

 \longrightarrow Possibility to bound each entry of the Hessian matrix

$$orall x \in [0,1]^n, \ \ \underline{c_{ij}} \leq h_{ij}(x) = rac{\partial^2 f}{\partial x_i x_i} \leq \overline{c_{ij}}$$

 \longrightarrow We want to compute an interval matrix C : $\forall i, j, \ C_{ij} = [c_{ij}, \overline{c_{ij}}]$

 $\longrightarrow \mathsf{Remark}$: It may be difficult to compute tight bounds

Approximation of the Hessian matrix

Let f be a binary polynomial defined by $f(x) = \sum_{i} c_i \prod_{j} x_{i_j}$. The following inequalities hold

$$\underline{c_{ij}} = \sum_{\substack{\text{monomial k such as} \\ x_i \wedge x_j \in k \\ c_k < 0}} c_k \le \frac{\partial^2 f}{\partial x_i x_j} \le \sum_{\substack{\text{monomial k such as} \\ x_i \wedge x_j \in k \\ c_k > 0}} c_k = \overline{c_{ij}}$$

Example

Let f be the polynomial $f: (x_1, x_2, x_3, x_4) \mapsto 2x_1 - 2x_2x_3x_4 + 3x_2x_3 - 3x_1x_2x_3x_4$

$$H(x) = \begin{pmatrix} 0 & -3x_3x_4 & -3x_2x_4 & -3x_2x_3 \\ -3x_3x_4 & 0 & 3 - 3x_1x_4 - 2x_4 & -2x_3 - 3x_1x_3 \\ -3x_2x_4 & 3 - 3x_1x_4 - 2x_4 & 0 & -2x_2 - 3x_1x_2 \\ -3x_2x_3 & -2x_3 - 3x_1x_3 & -2x_2 - 3x_1x_2 & 0 \end{pmatrix}$$
$$M = \begin{pmatrix} [0,0] & [-3,0] & [-3,0] & [-3,0] \\ [-3,0] & [0,0] & [-2,3] & [-5,0] \\ [-3,0] & [-2,3] & [0,0] & [-5,0] \\ [-3,0] & [-5,0] & [-5,0] & [0,0] \end{pmatrix}$$

Scaled Gerschgorin Theorem

 \longrightarrow Idea : Find a perturbation of the diagonal of H(x) using a vector λ

Theorem (Scaled Gerschgorin) Let C be an interval matrix, we define $\lambda \in \mathbb{R}^n$ by

$$\lambda_i = \min\left[0, \left(\underline{c_{ii}} - \sum_{j \neq i} \max(|\underline{c_{ij}}|, |\bar{c_{ij}}|)\right)\right] \quad \forall i \in \{1, ..., n\}$$

Then $C - diag(\lambda)$ is positive semidefinite.

 $\longrightarrow H(x) - diag(\lambda)$ is positive semidefinite $\forall x \in [0,1]^n$.

Reformulated problem

 \longrightarrow We obtain the following "convex" equivalent problem (P_{λ})

$$(P_{\lambda}) \begin{cases} \min f(x) - \sum_{i} \lambda_{i} (x_{i}^{2} - x_{i}) \\ \text{s.t.} \\ x_{i} \in \{0, 1\} \qquad i = 1, \dots, n \end{cases}$$

$$\longrightarrow$$
 Where $\lambda_i = \min\left[0, \left(\underline{c_{ii}} - \sum_{j \neq i} \max(|\underline{c_{ij}}|, |\bar{c_{ij}}|)
ight)
ight]$

 \longrightarrow In our example, $\lambda_i = (-9, -13, -13, -9)$

Example

 \longrightarrow Let f be the polynomial previously defined by $f: (x_1, x_2, x_3, x_4) \mapsto 2x_1 - 2x_2x_3x_4 + 3x_2x_3 - 3x_1x_2x_3x_4.$ It's minimum over $\{0, 1\}$ is 0

- \longrightarrow Convex quadratic reformulation:
 - 7 variables
 - 12 constraints
 - Continous relaxation -1.75
- \longrightarrow Convex polynomial reformulation:
 - 4 variables
 - O constraint
 - Continous relaxation -1.85

Numerical results

Numerical results

Quadratization algorithm

- \rightarrow Results depend on the way we quadratize the objective function \rightarrow In each monomial, we sort out the variables in increasing order \rightarrow We replace each product of variables by a new variable using the following rule:
 - for a monomial of degree 4: $\alpha x_1 x_2 x_3 x_4 \longrightarrow \alpha x_5 x_6$ with $x_5 = x_1 x_2$ and $x_6 = x_3 x_4$ (first appearance of the product)
 - for a monomial of degree 3: αx₁x₂x₃ → αx₅x₃ with x₅ = x₁x₂ (first appearance of the product)

Results - Convex quadratic reformulation

- \longrightarrow Uniform coefficients in $\left[-1,1\right]$
- \longrightarrow Uniform degrees in $\{1,..,4\}$
- \longrightarrow Solvers: CSDP, Cplex

Var/Mon	Nb var	Nb cons	SDP	B&B nodes	B&B	Gap
10/50	37	108	0.1s	30	2.6s	112%
10/100	49	156	0.1s	0	2.3s	29%
20/50	84	256	0.3s	333	2.5s	49%
20/200	133	452	1.1s	0	2.5s	57%
20/400	181	644	1.8s	3747	2.5s	82%
50/500	386	1344	5.3s	224777	147.1s	72%

Var/Mon	Nb var	Nb cons	SDP	B&B nodes	B&B	Gap
	145	493	1.6s	38147	26.6s	67%

Results - Convex polynomial reformulation

Var/Mon	B&B nodes	B&B	Gap
10/50	2	1s	220%
10/100	11	0.8s	62%
20/50	2	1s	91%
20/200	111	1.5s	111%
20/400	464	4.1s	115%
50/500	3112	37.9s	105%

Var/Mon	B&B nodes	B&B	Gap
	617	7.7s	117%
	38147	26.6s	67%

Conclusion

Conclusion

Conclusion

- We have presented two different convex reformulations
- Polynomial reformulation: First method dealing with direct convex reformulation of a polynomial (without changing the degree)
- \longrightarrow Many improvements are possible
 - Quadratic reformulation : Add cuts to the SDP, find a better quadratization,...
 - Polynomial reformulation : More precise computation of $\lambda,$ interval matrix,...