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Introduction

Introduction

We are interested in solving the following problem:

(P)


min f (x)
s.t.
xi ∈ {0, 1} i = 1, ..., n

where f is a polynomial with n binary variables. (P) is NP-hard whenever
deg(f ) ≥ 2.

Difficulties come from
Non-convexity of f
Integer variables
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Introduction

Introduction

Only a few efficient algorithms exist to find the global minimum of a
mixed-integer non-convex polynomial:

Some are based on a hierarchy of relaxations (Moment/SOS)
[Lasserre, GloptiPoly, 2003]

Others use reformulation/relaxation techniques before using a Branch
and Bound
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Introduction

Convex reformulation

The continuous relaxation of (P) is not necessarily convex

We want an equivalent reformulation of (P) such as its continuous
relaxation is convex

Possibly lift (P) in a higher dimensional space

Idea: Choose the best reformulation among a family of "convex"
reformulations (continous relaxation bound)

2 equivalent convex reformulations
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Convex quadratic reformulation

Convex quadratic reformulation
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Convex quadratic reformulation

Example

Let us consider the following program:

(Ex)


min 5x4x3x2 − 8x1

s.t.
xi ∈ {0, 1} i=1,...,4

We want to find a quadratic reformulation of (Ex) in a higher dimensional
space
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Convex quadratic reformulation

Example - Quadratization

(Ex)


min 5x4x3x2 − 8x1

s.t.
xi ∈ {0, 1} i=1,...,4

5 variables (1 new variable for
each monomial of degree 3)
Up to α− 2 new variables for
each monomial of degree α
4 constraints (g5(x) ≥ 0)

(Exquad)



min 5x5x2 − 8x1

s.t.
x5 ≤ x4

x5 ≤ x3

x5 ≥ x3 + x4 − 1
x5 ≥ 0
x1, x2, x3, x4, x5 ∈ {0, 1}
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Convex quadratic reformulation

Quadratic reformulation

−→ We found a quadratic reformulation (QP) of (P) in a higher
dimension

−→ (QP) ⇐⇒ (P)

(QP)



min f (x) =
∑

i

∑
j
qijxixj +

∑
i
cixi

s.t.
gj(x) ≥ 0 j = n + 1, ...,m
xi ∈ {0, 1} i = 1, ...,m

Elloumi, Lambert and Lazare Global Optimization of polynomial programs November 14th , 2017 11 / 30



Convex quadratic reformulation

Quadratic convex reformulation

−→ We want to find a convexification using the identity x2
i = xi

−→ We want to compute σ ∈ Rn to find a convex reformulation fσ of f

(QPσ)



min fσ(x) =
∑

i

∑
j
qijxixj +

∑
i
cixi +

∑
i
σi (x2

i − xi )

s.t.
gj(x) ≥ 0 j = n + 1, ...,m
xi ∈ {0, 1} i = 1, ...,m

−→ How to compute a "good" σ ?
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Convex quadratic reformulation

PSD based convexification

Theorem (MIQCR, 2012)

(PSDD)



min f (X , x) =
∑

i

∑
j
qijXij +

∑
i
cixi

s.t.
gj(x) ≥ 0 j = n + 1, ...,m
Xii = xi i = 1, ...,m (1)
X − xxT � 0
X ∈ Sm, x ∈ Rm

Possible values of σi are the optimal values of the dual variables associated
with constraint (1).

−→ Q + diag(σ) � 0
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Convex quadratic reformulation

Summary of the quadratization method

Find a quadratization (QP) of (P). Moving from a n-dimensional
space to a m-dimensional space

Solve (PSDD) to compute values of σ and find a convexification of
(QP)

Solve (QPσ) using a Branch and Bound. At each node we solve a
convex quadratic relaxation
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Convex polynomial reformulation

Convex polynomial reformulation
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Convex polynomial reformulation

Idea - Equivalent polynomial reformulation

−→ We want to reformulate f in a convex polynomial with the same
degree

−→ Idea: Find a perturbation of the Hessian matrix H(x) to make it
positive semidefinite (PSD) for all x ∈ [0, 1]n

−→ Method:

Let λ ∈ Rn and fλ(x) = f (x)−
∑

i λi (x2
i − xi )

f (x) = fλ(x), ∀x ∈ {0, 1}n

We search for λ such as fλ is convex over [0, 1]n
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Convex polynomial reformulation

Equivalent polynomial reformulation

−→ We obtain the following convex reformulation of (P):

(P) ⇐⇒ (Pλ)


min f (x)−

∑
i
λi (x2

i − xi )

s.t.
xi ∈ {0, 1} i = 1, . . . , n

−→ Both problems are equivalent and have the same degree and the same
variables

−→ We want to compute λ such as fλ is convex
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Convex polynomial reformulation

Hessian matrix and approximation

Goal: Find λ such as fλ is convex

Let Hλ(x) be the Hessian matrix of fλ, Hλ(x) = H(x)− diag(λ)

We want λ such as ∀x ∈ [0, 1]n, Hλ(x) � 0

Method

1 Include H(x) in an interval matrix C
2 Find λ so that ∀M ∈ C , M − diag(λ) � 0
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Convex polynomial reformulation

Interval matrices

Definition (Interval matrix)
An interval matrix C is a matrix whose elements are interval numbers.

−→ Possibility to bound each entry of the Hessian matrix

∀x ∈ [0, 1]n, cij ≤ hij(x) = ∂2f
∂xixj

≤ cij

−→ We want to compute an interval matrix C : ∀i , j , Cij = [cij , cij ]

−→ Remark : It may be difficult to compute tight bounds
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Convex polynomial reformulation

Approximation of the Hessian matrix

Let f be a binary polynomial defined by f (x) =
∑

i ci
∏

j xij . The following
inequalities hold

cij =
∑

monomial k such as
xi ∧xj ∈k

ck<0

ck ≤
∂2f
∂xixj

≤
∑

monomial k such as
xi ∧xj ∈k

ck>0

ck = cij
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Convex polynomial reformulation

Example

Let f be the polynomial
f : (x1, x2, x3, x4) 7→ 2x1 − 2x2x3x4 + 3x2x3 − 3x1x2x3x4

H(x) =


0 −3x3x4 −3x2x4 −3x2x3

−3x3x4 0 3− 3x1x4 − 2x4 −2x3 − 3x1x3
−3x2x4 3− 3x1x4 − 2x4 0 −2x2 − 3x1x2
−3x2x3 −2x3 − 3x1x3 −2x2 − 3x1x2 0



M =


[0, 0] [−3, 0] [−3, 0] [−3, 0]
[-3,0] [0, 0] [−2, 3] [−5, 0]
[-3,0] [−2, 3] [0, 0] [−5, 0]
[-3,0] [−5, 0] [−5, 0] [0, 0]


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Convex polynomial reformulation

Scaled Gerschgorin Theorem

−→ Idea : Find a perturbation of the diagonal of H(x) using a vector λ

Theorem (Scaled Gerschgorin)
Let C be an interval matrix, we define λ ∈ Rn by

λi = min

0,
cii −

∑
j 6=i

max(|cij |, |c̄ij |)

 ∀i ∈ {1, ..., n}

Then C − diag(λ) is positive semidefinite.

−→ H(x)− diag(λ) is positive semidefinite ∀x ∈ [0, 1]n.
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Convex polynomial reformulation

Reformulated problem

−→ We obtain the following "convex" equivalent problem (Pλ)

(Pλ)


min f (x)−

∑
i
λi (x2

i − xi )

s.t.
xi ∈ {0, 1} i = 1, . . . , n

−→ Where λi = min
[
0,
(
cii −

∑
j 6=i max(|cij |, |c̄ij |)

)]
−→ In our example, λi = (−9,−13,−13,−9)
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Convex polynomial reformulation

Example

−→ Let f be the polynomial previously defined by
f : (x1, x2, x3, x4) 7→ 2x1 − 2x2x3x4 + 3x2x3 − 3x1x2x3x4.
It’s minimum over {0, 1} is 0

−→ Convex quadratic reformulation:
7 variables
12 constraints
Continous relaxation -1.75

−→ Convex polynomial reformulation:
4 variables
0 constraint
Continous relaxation -1.85
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Numerical results

Numerical results
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Numerical results

Quadratization algorithm

−→ Results depend on the way we quadratize the objective function

−→ In each monomial, we sort out the variables in increasing order

−→ We replace each product of variables by a new variable using the
following rule:

for a monomial of degree 4: αx1x2x3x4 −→ αx5x6
with x5 = x1x2 and x6 = x3x4 (first appearance of the product)

for a monomial of degree 3: αx1x2x3 −→ αx5x3
with x5 = x1x2 (first appearance of the product)
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Numerical results

Results - Convex quadratic reformulation
−→ Uniform coefficients in [−1, 1]

−→ Uniform degrees in {1, .., 4}

−→ Solvers: CSDP, Cplex

Var/Mon Nb var Nb cons SDP B&B nodes B&B Gap
10/50 37 108 0.1s 30 2.6s 112%
10/100 49 156 0.1s 0 2.3s 29%
20/50 84 256 0.3s 333 2.5s 49%
20/200 133 452 1.1s 0 2.5s 57%
20/400 181 644 1.8s 3747 2.5s 82%
50/500 386 1344 5.3s 224777 147.1s 72%

Var/Mon Nb var Nb cons SDP B&B nodes B&B Gap
145 493 1.6s 38147 26.6s 67%
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Numerical results

Results - Convex polynomial reformulation

Var/Mon B&B nodes B&B Gap
10/50 2 1s 220%
10/100 11 0.8s 62%
20/50 2 1s 91%
20/200 111 1.5s 111%
20/400 464 4.1s 115%
50/500 3112 37.9s 105%

Var/Mon B&B nodes B&B Gap
617 7.7s 117%
38147 26.6s 67%
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Conclusion

Conclusion
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Conclusion

Conclusion

We have presented two different convex reformulations

Polynomial reformulation: First method dealing with direct convex
reformulation of a polynomial (without changing the degree)

−→ Many improvements are possible

Quadratic reformulation : Add cuts to the SDP, find a better
quadratization,...

Polynomial reformulation : More precise computation of λ, interval
matrix,...
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