Scheduling of EDF’s reactor outages
State of the art, current works and new roads

M. Porcheron

EDF R&D OSIRIS

PGMO Inaugural Conference
19 Septembre 2012
A huge energy management problem

Current approaches

New roads
A huge energy management problem

1. Problem presentation
 - Nuclear Power Plant operating
 - Conventional and Market unit operating
 - Problem formulation

2. Current approaches
 - Common hypotheses
 - Local Search (EDF’s Operational tool)
 - MILP frontal solving (EDF’s Research prototype)
 - Challenge EURO/ROADEF 2010 solutions

3. New roads
 - Taking into account random outage durations
 - Tackling re-optimization and stability
 - Some other prospective works in progress
 - Much remains to be done

M. Porcheron/EDF R&D OSIRIS
Scheduling of EDF’s reactor outages 09/2012 3/41
- \(\approx 60 \) Nuclear Power Plants (NPP), which have to be periodically stopped and refuelled (indice \(i \in \{1...I\} \))
- \(\approx 50 \) "Conventional" Thermal Units (CTU), which can continuously produce (e.g. fuel, coal, gas units)(indice \(j \in \{1...J\} \))
- \(\approx 50 \) groups modeling Sells/Purchases on the Markets (MG) (indice \(g \in \{1...G\} \))
Find a NPP outage planning and refueling quantities which minimize a "production cost" over a time horizon of 5 to 10 years while satisfying:

- The load demand on each time step $t \in \{1...T\}$
- NPP, CTU and MG operating constraints
- Scheduling and resource constraints on NPP outages

Some important features of EDF portfolio:

- NPP production cost is much more lower than CTU and MG ones
- NPP installed power represents about 60% of the whole installed power
- Basically, NPP outages must take place during periods of low demand
Uncertainties

- **Load demand** to be satisfied on each time step, D^δ_t;
- **Prices and capacities** of sells/purchases on the spot market, correlated to demand through temperature: C^δ_g,t, $P_{max}^\delta_g,t$;
- **Availability** of CTU (affected by production losses due to faults): $P_{max}^\theta_j,t$;
- **Initial stock level** of NPP: X^λ_{i,t_0};
- **Duration of outages** of NPP: $L_{ga}^\psi_{i,k}$;
- **Availability** of NPP (affected by production losses due to faults occurring between outages): $P_{max}^\phi_{i,t}$.

We note $\Omega \subseteq \Delta \times \Theta \times \Lambda \times \Psi \times \Phi$ the whole stochastic space, ω a given scenario in Ω.

M. Porcheron/EDF R&D OSIRIS Scheduling of EDF’s reactor outages 09/2012 6/41
Outage dates and refueling quantities are the decision variables applied in the operational process of EDF; unit productions are re-optimized at shorter time horizons;

Outage dates and refueling quantities are recomputed monthly, without adapting them during the forthcoming month.

Open-loop process: NPP optimal planning is monthly recomputed on a sliding pluri-annual horizon in the current state of the system; We do not look for strategies/feedback laws of outage placement, which would enable to calculate future optimal decisions starting from observations.
1. A huge energy management problem
 - Problem presentation
 - Nuclear Power Plant operating
 - Conventional and Market unit operating
 - Problem formulation

2. Current approaches
 - Common hypotheses
 - Local Search (EDF’s Operational tool)
 - MILP frontal solving (EDF’s Research prototype)
 - Challenge EURO/ROADEF 2010 solutions

3. New roads
 - Taking into account random outage durations
 - Tackling re-optimization and stability
 - Some other prospective works in progress
 - Much remains to be done
A huge energy management problem
Current approaches
New roads

Problem presentation
Nuclear Power Plant operating
Conventional and Market unit operating
Problem formulation

Cycles

- \((i, k)\) : the cycle formed by the kieme production campaign and the kieme outage of unit \(i\)
- \(t_{0_{i,k}}\) : starting instant of cycle \((i, k)\)
- \(t_{f_{i,k}}\) : ending instant of cycle \((i, k)\) campaign (= starting instant of cycle \((i, k)\) outage)
Variables and data

Variables:

\[x(i, t, \omega) : \text{Stock level of unit } i \text{ at the beginning of time step } t \]
\[\text{on scenario } \omega \text{ (energy)} \]
\[p(i, t, \omega) : \text{Production level of unit } i \text{ on time step } t \text{ on scenario } \omega \text{ (power)} \]
\[a(i, k) : \text{Outage date of unit } i \text{ at cycle } k \text{ (week number, discrete)} \]
\[r(i, k) : \text{Refueling of unit } i \text{ at cycle } k \text{ (energy)} \]

Data:

\[X_{i, t_0}^\omega : \text{Initial stock level of unit } i \text{ on scenario } \omega \text{ (energy)} \]
\[L_g a_{i, k}^\omega : \text{Duration of the outage of unit } i \text{ at cycle } k \text{ on scenario } \omega \text{ (number of weeks)} \]
\[C_{i, k} \text{ (resp. } C_{i, T}^T) : \text{Proportional cost of fuel of unit } i \text{ at cycle } k \]
\[\text{ (resp. at the final instant } T) \text{ (Euro/MWh)} \]
Bounds on the stock level at the beginning of an outage and after refueling

Bounds on the refueling quantity $r(i, k)$

- Refueling:
 \[x(i, t_0, k, \omega) - B_{0i, k} = r(i, k) + \frac{(q_{i,k-1})}{q_{i,k}} (x(i, t_f, k-1, \omega) - B_{0i,k-1}) \]

- Production campaign:
 \[x(i, t_0 + 1, \omega) = X^\omega_{i,t_0} - p(i, t_0, \omega) \cdot dt \]
 \[x(i, t + 1, \omega) = x(i, t, \omega) - p(i, t, \omega) \cdot dt, t > t_0 \]
Production constraints

- Production must be null during outages
 - Coupling between discrete and continuous variables ...
- Bounds on production

NB: after the "Zero Boron" threshold, non-linear decreasing profile depending on the stock → Numerous state variables mandatory to impose the exact command...
Constraints on outages dates and resources

- Some maintenance operation must be done after or before a given date
 - Earliest/latest dates
- Some delay has to be enforced between maintenance operations occurring during different outages
 - Minimum spacing/maximum overlapping
- Bounds on the maximal loss of nuclear power have to be complied with
 - Maximal number of outages overlapping on a given time period
- Specialized maintenance teams/tools have to be shared by different outages, possibly with a delay between successive operations
 - Limited quantities of resources used during outages
A huge energy management problem
Problem presentation
Nuclear Power Plant operating
Conventional and Market unit operating
Problem formulation

Current approaches
Common hypotheses
Local Search (EDF’s Operational tool)
MILP frontal solving (EDF’s Research prototype)
Challenge EURO/ROADEF 2010 solutions

New roads
Taking into account random outage durations
Tackling re-optimization and stability
Some other prospective works in progress
Much remains to be done
NB: for the sake of simplicity, CTU units are modeled with cost and maximal power depending on the scenario, which allows to represent groups of sells/purchases on the market (MG) in the same set.

- **Variables:**

 \[p(j, t, \omega) : \text{Production of CTU unit } j \text{ at time-step } t \text{ of scenario } \omega \text{ (power)} \]

- **Data:** production cost and maximal power available depending on the scenarios:

 \[C_{j, t}^{\omega}, P_{max}^{\omega}_{j, t} \]

- **A single constraint, bounds on the maximal power available:**

 \[\forall (j, t, \omega), 0 \leq p(j, t, \omega) \leq P_{max}^{\omega}_{j, t} \]
A huge energy management problem

Problem presentation
Nuclear Power Plant operating
Conventional and Market unit operating
Problem formulation

Current approaches
Common hypotheses
Local Search (EDF’s Operational tool)
MILP frontal solving (EDF’s Research prototype)
Challenge EURO/ROADEF 2010 solutions

New roads
Taking into account random outage durations
Tackling re-optimization and stability
Some other prospective works in progress
Much remains to be done
Problem formulation

\[
\begin{align*}
\text{Min} & \quad a(i,k), r(i,k)p(i,t,\omega), p(j,t,\omega) \left\{ \sum_{i,k} C_{i,k} \cdot r(i,k) \right. \\
& + \sum_{\omega} \pi(\omega) \left[\sum_{j,t} C_{j,t}^\omega \cdot p(j,t,\omega) \cdot dt - \sum_{i,k} C_{i,T}^T \cdot x(i,T,\omega) \right] \}
\end{align*}
\]

\[s.t.\]
\[
\forall t, \omega \sum_{i} p(i,t,\omega) + \sum_{j} p(j,t,\omega) = D_{t}^\omega
\]

+ operating constraints of NPP and CTU units
+ scheduling and resource constraints on outages of NPP units
A huge energy management problem

Current approaches

New roads

Problem presentation

Nuclear Power Plant operating

Conventional and Market unit operating

Problem formulation

Interpretation

A set of outage dates and refueling quantities for NPP units which minimize the refueling cost plus the mean of the production cost of NPP and CTU units on the all set of scenarios

A huge combinatorial stochastic problem with multi-stage recourse:

- Variables \(a(i, k) \) and \(r(i, k) \): Here and now variables, independent of the scenarios

- Variables \(p(i, t, \omega) \) and \(p(j, t, \omega) \): Wait and see or recourse variables depending on the scenarios

- Size:
 \[I \approx 60, \ Nbcycles \approx 5, \ J \approx 100, \ T \approx 5 \times 50 \times 40, \ |\Omega| \text{enormous} \]
A huge energy management problem

Problem presentation
Nuclear Power Plant operating
Conventional and Market unit operating
Problem formulation

Current approaches

Common hypotheses
Local Search (EDF’s Operational tool)
MILP frontal solving (EDF’s Research prototype)
Challenge EURO/ROADEF 2010 solutions

New roads
Taking into account random outage durations
Tackling re-optimization and stability
Some other prospective works in progress
Much remains to be done

M. Porcheron/EDF R&D OSIRIS
Scheduling of EDF’s reactor outages 09/2012 19/41
Deterministic NPP outage durations, NPP stock levels, NPP and CTU unavailability:

- $\Omega \subseteq \Delta$: only random data on load demand, prices and capacities of exchanges on the spot market are taken into account.
A huge energy management problem

Problem presentation
Nuclear Power Plant operating
Conventional and Market unit operating
Problem formulation

Current approaches

Common hypotheses
Local Search (EDF’s Operational tool)
MILP frontal solving (EDF’s Research prototype)
Challenge EURO/ROADEF 2010 solutions

New roads

Taking into account random outage durations
Tackling re-optimization and stability
Some other prospective works in progress
Much remains to be done
Simplifications

- Average CTU costs/capacities and targeted NPP productions to fulfill, pre-computed on the whole set of scenarios, for a few global NPP park availability hypotheses (loss of extreme scenarios);
- Duration of the time-step: one week (loss of demand variations and dynamical constraints inside a week);
- Search of the best planning in the neighborhood of the planning computed the previous month (loss of solutions located outside the neighborhood considered);
- Decomposition by NPP sites (loss of the constraints coupling outages of plants located on different sites).
Resolution principle

- **Local search** implemented by iterations between two modules:
 - **M1**: A *LP* (re)optimizing the production once NPP outages have been fixed by **M2**
 - **M2**: A *MILP* (re)optimizing (locally moving) the outages dates using the *marginal costs* pre-computed or obtained by **M1**

- In practice, the planning is built by experts, using the tool in an interactive manner
1 A huge energy management problem
 - Problem presentation
 - Nuclear Power Plant operating
 - Conventional and Market unit operating
 - Problem formulation

2 Current approaches
 - Common hypotheses
 - Local Search (EDF’s Operational tool)
 - MILP frontal solving (EDF’s Research prototype)
 - Challenge EURO/ROADEF 2010 solutions

3 New roads
 - Taking into account random outage durations
 - Tackling re-optimization and stability
 - Some other prospective works in progress
 - Much remains to be done
Resolution principle

- Same simplifications as above;
- Frontal resolution of the compact MILP formulation of the problem (e.g. by IBM ILOG CPLEX);
- Advantages: global solution theoretically found on the research space, coupling constraints between outages of NPP located on different sites satisfied;
- Drawbacks: computation time intractable except for limited research spaces.
1 A huge energy management problem
 - Problem presentation
 - Nuclear Power Plant operating
 - Conventional and Market unit operating
 - Problem formulation

2 Current approaches
 - Common hypotheses
 - Local Search (EDF’s Operational tool)
 - MILP frontal solving (EDF’s Research prototype)
 - Challenge EURO/ROADEF 2010 solutions

3 New roads
 - Taking into account random outage durations
 - Tackling re-optimization and stability
 - Some other prospective works in progress
 - Much remains to be done
A huge energy management problem

Current approaches

New roads

Common hypotheses
Local Search (EDF’s Operational tool)
MILP frontal solving (EDF’s Research prototype)
Challenge EURO/ROADEF 2010 solutions

Best teams and approaches

- **LIX (Polytechnique)**: mixing PLNE for outage dates placement and heuristics for production and refueling optimization
- **belImproved (Netherlander optimization company)**: local search driven by simulated annealing
- **elabs (Bouygues)**: local search using *LocalSolver*
- **LIPN (Université Paris Nord)**: mixing column generation for outage dates placement and LP for production and refueling optimization
Good results were obtained in a limited computation time (1 h)

Like EDF operational tool, almost every approach:
- uses an average scenario;
- uses a hierarchical resolution scheme splitting the problem usually between outages dates placement and production/refueling optimization once major combinatorial decisions have been made;

Unlike EDF operational tool, every approach:
- maintains all outage coupling constraints (*no decomposition by NPP subsets*);
- when based on local search, explores large neighborhoods (e.g. outage swaps, long outage moves as "winter jumps"...)}
A huge energy management problem

Current approaches

New roads

Taking into account random outage durations
Tackling re-optimization and stability
Some other prospective works in progress
Much remains to be done

Contents

1 A huge energy management problem
 ● Problem presentation
 ● Nuclear Power Plant operating
 ● Conventional and Market unit operating
 ● Problem formulation

2 Current approaches
 ● Common hypotheses
 ● Local Search (EDF’s Operational tool)
 ● MILP frontal solving (EDF’s Research prototype)
 ● Challenge EURO/ROADEF 2010 solutions

3 New roads
 ● Taking into account random outage durations
 ● Tackling re-optimization and stability
 ● Some other prospective works in progress
 ● Much remains to be done
Toward a robust formulation I/II

- The current formulation corresponds to a stochastic optimization of a multi-stages problem with recourse:

\[
\min_{x \in X} \left\{ f(x) + \mathbb{E}_\omega [Q(x, \omega)] \right\},
\quad Q(x, \omega) = \min_{y \omega \geq 0} \left\{ g(y_\omega) \text{ s.t. } h(x, y_\omega, \omega) = 0 \right\}
\]

- With random outage durations, a robust formulation seems more sensible:

\[
\min_{x \in X} \left\{ f(x) + \max_{\omega \in \Omega} \{ Q(x, \omega) \} \right\},
\quad Q(x, \omega) = \min_{y \omega \geq 0} \left\{ g(y_\omega) \text{ s.t. } h(x, y_\omega, \omega) = 0 \right\}
\]

- Outage dates and refuelings stay robust here-and-now variables, productions stay recourse variables, but we want solutions to be robust facing for example the worst-case on some uncertainty set for outage durations.
A huge energy management problem
Current approaches
New roads

Taking into account random outage durations
Tackling re-optimization and stability
Some other prospective works in progress
Much remains to be done

Toward a robust formulation II/II

New stochastic space: \(\Omega \subseteq \Delta \times \Psi \)

\[
\begin{align*}
\min_{a(i,k), r(i,k)} & \{ \sum_{i,k} C_{i,k} \cdot r(i,k) \} + \\
\max_{\psi \in \Psi'} & \{ \min_{p(i,t,\delta,\psi), p(j,t,\delta,\psi)} \{ \\
\sum_{\delta} \pi(\delta)[\sum_{j,t} C_{j,t}^{\omega} \cdot p(j,t,\delta,\psi) \cdot dt - \sum_{i,k} C_{i}^{T} \cdot x(i,T,\delta,\psi)] \} \} \}
\end{align*}
\]

s.t.

\(\forall t, \delta, \psi, \sum_{i} p(i,t,\delta,\psi) + \sum_{j} p(j,t,\delta,\psi) = D_{t}^{\delta} \)

+ operating constraints of NPP and CTU units
+ scheduling and resource constraints on NPP outages

N. Dupin’s PHD, in collaboration with INRIA Bordeaux (F. VanderBeck) and INRIA Lille (E.G. Talbi)
A huge energy management problem
Problem presentation
Nuclear Power Plant operating
Conventional and Market unit operating
Problem formulation

Current approaches
Common hypotheses
Local Search (EDF’s Operational tool)
MILP frontal solving (EDF’s Research prototype)
Challenge EURO/ROADEF 2010 solutions

New roads
Taking into account random outage durations
Tackling re-optimization and stability
Some other prospective works in progress
Much remains to be done
Monthly re-computations of the planning and stability of the solution along this iterative process is not at all taken into account → New partition of the decision variables

- $a_m(i, k), r_m(i, k)$: outage dates and refueling quantities computed at month m: robust here and now variables, decided before stochastic data reveal itself

- Recourse wait and see variables, decided after occurrences of random events during the forthcoming month m and applied during m (NB: No outage moves during the forthcoming month !)
 - $p_m(i, t, \omega_m), p_m(j, t, \omega_m)$: production recourse
 - $dr_m(i, k, \psi_m) \in \mathbb{Z}$: refueling recourse for an underway outage (i, k), facing an exceptional prolongation.
Modeling recourse on outage dates and refuelings II

- **Recourse wait and see** variables, decided after occurrences of random events during the forthcoming month m and applied beyond m, through the re-optimizations, i.e. *in the state of the system resulting from random events which have occurred during m*:
 \[\forall n \geq 1,\]
 \[\begin{align*}
 &\text{\textbullet} \ da_{m+n}(i, k, \omega_{m+n-1}) \in \mathbb{Z}, \ dr_{m+n}(i, k, \omega_{m+n-1}) \in \mathbb{Z} : \text{outage move and refueling recourses applied at month } m+n \\
 &\text{\textbullet} \ pm_{m+n}(i, t, \omega_{m+n-1}), \ pm_{m+n}(j, t, \omega_{m+n-1}) : \text{production recourses applied during month } m+n
 \end{align*}\]

- The good news: **outage move recourses** are tightly constrained because we can’t move close outages

Post-Doctorat, accepted in PGMO/IROE in collaboration with LIX/Polytechique (V. Jost) and LIPN/Université Paris XIII (R. Wolfer)
A huge energy management problem

Problem presentation
Nuclear Power Plant operating
Conventional and Market unit operating
Problem formulation

Current approaches
Common hypotheses
Local Search (EDF’s Operational tool)
MILP frontal solving (EDF’s Research prototype)
Challenge EURO/ROADEF 2010 solutions

New roads
Taking into account random outage durations
Tackling re-optimization and stability
Some other prospective works in progress
Much remains to be done
Some other prospective works in progress

- Using SDP to get better bounds
 A. Gorge’s PHD, with LRI/Université Paris XI (A. Lisser)

- Tackling uncertainties through joint probabilistic constraints
 Post-Doctorat, accepted in PGMO/IROE in collaboration with LRI/Université Paris XII, (A. Lisser)
A huge energy management problem

Problem presentation
Nuclear Power Plant operating
Conventional and Market unit operating
Problem formulation

Current approaches
Common hypotheses
Local Search (EDF’s Operational tool)
MILP frontal solving (EDF’s Research prototype)
Challenge EURO/ROADEF 2010 solutions

New roads
Taking into account random outage durations
Tackling re-optimization and stability
Some other prospective works in progress

Much remains to be done
The formulation is **anticipative**: the future of each *load demand* scenario is considered known when decisions are taken → the real production cost is underestimated.

The load/demand balance is incomplete
- Some production units are missing (e.g. hydraulic plants)
- Some constraints are missing (e.g. accurate dynamic constraints on NPP operating)

The random space is still incomplete: random data on unit unavailability and NPP stock levels are discarded.

What about scheduling strategies?: we should need them to implement a *closed-loop* process in a *simulator* implementing the monthly scheduling → **the big challenge**
References I

References II

A huge energy management problem
Current approaches
New roads
Taking into account random outage durations
Tackling re-optimization and stability
Some other prospective works in progress
Much remains to be done

References III
