An introduction to switched systems

Guilherme Mazanti

Rentrée des masters de la FMJH
IHÉS – 9 septembre 2016

LMO, Université Paris-Sud
Outline

1. Introduction
 - Switched systems
 - Examples of switched systems
 - Switching signals
 - Stability of switched systems

2. Stability analysis under arbitrary switching signals
 - Framework
 - Commuting matrices
 - Common quadratic Lyapunov functions
 - Worst trajectory
 - Converse Lyapunov theorems
 - Classification of stable planar switched systems with two modes

3. Conclusion
 - To go further
 - References
Introduction
Switched systems

Classical setting for autonomous differential equations:
\[\dot{x}(t) = f(x(t)), \]
\[f : \mathbb{R}^d \rightarrow \mathbb{R}^d \] a locally Lipschitz function.
Classical setting for autonomous differential equations:
\[\dot{x}(t) = f(x(t)), \]
\(f : \mathbb{R}^d \to \mathbb{R}^d \) a locally Lipschitz function.

Switched system: equation under the form,
\[\dot{x}(t) = f_{\sigma(t)}(x(t)), \]
where one has \(N \) (smooth) vector fields \(f_1, \ldots, f_N \) and a (piecewise constant) switching signal \(\sigma : \mathbb{R}_+ \to [1, N] \).
Classical setting for autonomous differential equations:

\[\dot{x}(t) = f(x(t)), \]

\(f : \mathbb{R}^d \to \mathbb{R}^d \) a locally Lipschitz function.

Switched system: equation under the form,

\[\dot{x}(t) = f_{\sigma(t)}(x(t)), \]

where one has \(N \) (smooth) vector fields \(f_1, \ldots, f_N \) and a (piecewise constant) switching signal \(\sigma : \mathbb{R}_+ \to [1, N] \).

Interaction between the continuous variable \(x \in \mathbb{R}^d \) and the discrete state \(\sigma \in [1, N] \).
Classical setting for autonomous differential equations:
\[\dot{x}(t) = f(x(t)), \]
where \(f : \mathbb{R}^d \rightarrow \mathbb{R}^d \) is a locally Lipschitz function.

Switched system: equation under the form,
\[\dot{x}(t) = f_{\sigma(t)}(x(t)), \]
where one has \(N \) (smooth) vector fields \(f_1, \ldots, f_N \) and a (piecewise constant) switching signal \(\sigma : \mathbb{R}_+ \rightarrow [1, N] \).

Interaction between the continuous variable \(x \in \mathbb{R}^d \) and the discrete state \(\sigma \in [1, N] \).

Important models in physics, engineering, applied maths...
Example: simple model for the average temperature of a heated room.

\[\dot{\theta}(t) = -\rho(\theta(t) - \theta_{\text{ext}}), \quad \text{if the heater is off,} \]
\[\dot{\theta}(t) = -\rho(\theta(t) - \theta_{\text{ext}}) + \beta, \quad \text{if the heater is on.} \]
Example: simple model for the average temperature of a heated room.

\[\dot{\theta}(t) = -\rho(\theta(t) - \theta_{ext}), \quad \text{if the heater is off}, \]
\[\dot{\theta}(t) = -\rho(\theta(t) - \theta_{ext}) + \beta, \quad \text{if the heater is on}. \]

Switched system:
\[\dot{\theta}(t) = -\rho(\theta(t) - \theta_{ext}) + \beta \sigma(t), \quad \sigma(t) \in \{0, 1\}. \]
Introduction
Examples of switched systems

Example: simple model for a petrol engine (see [Eastop, McConkey; 1993]).

- Four cycles: isentropic compression / expansion, isovolumetric heating / cooling
- Different dynamics for each cycle.
Example: simple model for a petrol engine (see [Eastop, McConkey; 1993]).

- Four cycles: isentropic compression / expansion, isovolumetric heating / cooling
- Different dynamics for each cycle.

\[
\dot{x}(t) = f_{\sigma(t)}(x(t)),
\]

\[\sigma(t) \in \{1, 2, 3, 4\}.\]
Example: robot controlled by a wireless network (see [Jungers, Heemels; 2015]).

\[\dot{x}(t) = f(x(t), u(t)) \]

- \(u(t) \): control input sent via a wireless network to the robot.
- \(\dot{x}(t) = f(x(t), 0) \): “natural” dynamics of the robot.
Introduction

Examples of switched systems

Example: robot controlled by a wireless network (see [Jungers, Heemels; 2015]).

\[
\dot{x}(t) = f(x(t), u(t))
\]

- \(u(t)\): control input sent via a wireless network to the robot.
- \(\dot{x}(t) = f(x(t), 0)\): “natural” dynamics of the robot.
- Failures in the network:
 \[
 \dot{x}(t) = f(x(t), \sigma(t)u(t)), \quad \sigma(t) \in \{0, 1\}.
 \]
Example: optimal control of a point unit mass.

- Dynamics: $\ddot{x}(t) = u(t)$, $u(t) \in [-1, 1]$.
- Goal: move the mass to the origin at rest in minimal time.
Example: optimal control of a point unit mass.

- Dynamics: $\ddot{x}(t) = u(t)$, $u(t) \in [-1, 1]$.
- Goal: move the mass to the origin at rest in minimal time.
- Optimal choice of u (for $x_0 > 0$ and v_0 “not too negative”): $u(t) = -1$ up to a certain time t_\ast, then $u(t) = 1$ until it arrives at the origin at rest.
- System with optimal control: switched system between $\ddot{x}(t) = -1$ and $\ddot{x}(t) = 1$.

An introduction to switched systems

Guilherme Mazanti
Example: **optimal control** of a point unit mass.

- **Dynamics:** $\ddot{x}(t) = u(t)$, $u(t) \in [-1, 1]$.
- **Goal:** move the mass to the origin *at rest* in minimal time.
- **Optimal choice of u (for $x_0 > 0$ and v_0 “not too negative”):** $u(t) = -1$ up to a certain time t_*, then $u(t) = 1$ until it arrives at the origin at rest.
- **System with optimal control:** switched system between $\ddot{x}(t) = -1$ and $\ddot{x}(t) = 1$.
- **Very often, optimal control problems lead to switched systems!**
- **More on optimal control:** M2 course (2nd semester) “Geometric Control”.

An introduction to switched systems

Guilherme Mazanti
Introduction
Switching signals

\[\dot{x}(t) = f_{\sigma(t)}(x(t)), \quad \sigma(t) \in [1, N]. \]

The switching signal \(\sigma \) can be:

- controlled or uncontrolled;
The switching signal σ can be:

- controlled or uncontrolled;
- constrained or arbitrary;

The switching signal σ can be:

\[\dot{x}(t) = f_{\sigma(t)}(x(t)), \quad \sigma(t) \in [1, N]. \]
\[
\dot{x}(t) = f_{\sigma(t)}(x(t)), \quad \sigma(t) \in [1, N].
\]

The switching signal \(\sigma \) can be:

- controlled or uncontrolled;
- constrained or arbitrary;
- state-dependent or time-dependent;
The switching signal σ can be:

- controlled or uncontrolled;
- constrained or arbitrary;
- state-dependent or time-dependent;
- random or deterministic.
\[\dot{x}(t) = f_{\sigma(t)}(x(t)), \quad \sigma(t) \in [1, N]. \]

The **switching signal** \(\sigma \) can be:

- **controlled** or **uncontrolled**;
- **constrained** or **arbitrary**;
- **state-dependent** or **time-dependent**;
- **random** or **deterministic**.

In this talk: uncontrolled, time-dependent, arbitrary, deterministic switching signals.
In this talk, we focus on the stability of the origin of linear switched systems:

\[
\dot{x}(t) = A_{\sigma(t)} x(t).
\]
In this talk, we focus on the stability of the origin of linear switched systems:
\[\dot{x}(t) = A_{\sigma(t)} x(t). \]

Example: \(N = 2, \)
\[
A_1 = \begin{pmatrix} -1 & 9 \\ -1 & -1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} -1 & -1 \\ 9 & -1 \end{pmatrix}.
\]
In this talk, we focus on the stability of the origin of linear switched systems:

\[\dot{x}(t) = A_{\sigma(t)} x(t). \]

Example: $N = 2$,

\[A_1 = \begin{pmatrix} -1 & 9 \\ -1 & -1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} -1 & -1 \\ 9 & -1 \end{pmatrix}. \]

Eigenvalues: $\lambda_{1,2} = -1 \pm 3i$.

![Graph of system dynamics](image-url)
Introduction

Stability of switched systems
Switching between stable subsystems may lead to instability!

Similarly, unstable subsystems may sometimes be stabilized by a suitable switching law.

It is important to provide criteria in order to characterize the stability of switched systems.
Stability analysis under arbitrary switching signals

Framework

\[\dot{x}(t) = A_{\sigma(t)} x(t), \quad \sigma(t) \in [1, N]. \]

- \(\sigma : \mathbb{R} \to [1, N]\) can be any piecewise constant function (with finitely many discontinuities on any bounded interval),

\[\sigma(t) \in J_1, N^K.\]
Stability analysis under arbitrary switching signals

Framework

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

- \(\sigma : \mathbb{R} \to [1, N] \) can be any piecewise constant function (with finitely many discontinuities on any bounded interval),
- or, more generally, any function in \(L^\infty(\mathbb{R}, [1, N]) \).
Stability analysis under arbitrary switching signals

Framework

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in \left[1, N\right]. \]

- \(\sigma : \mathbb{R} \to \left[1, N\right] \) can be any piecewise constant function (with finitely many discontinuities on any bounded interval),
- or, more generally, any function in \(L^\infty(\mathbb{R}, \left[1, N\right]) \).
- Goal: provide conditions on \(A_1, \ldots, A_N \) such that all solutions of the system converge to 0 for every switching signal \(\sigma \).
- Obvious necessary condition: all systems \(\dot{x}(t) = A_i x(t) \) must be exponentially stable for \(i \in \left[1, N\right] \) (i.e., \(A_i \) Hurwitz).
Introduction

Stability analysis

Conclusion

Stability analysis under arbitrary switching signals

Framework

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

- \(\sigma : \mathbb{R} \rightarrow [1, N] \) can be any piecewise constant function (with finitely many discontinuities on any bounded interval),

- or, more generally, any function in \(L^\infty(\mathbb{R}, [1, N]) \).

- Goal: provide conditions on \(A_1, \ldots, A_N \) such that all solutions of the system converge to 0 for every switching signal \(\sigma \).

- Obvious necessary condition: all systems \(\dot{x}(t) = A_i x(t) \) must be exponentially stable for \(i \in [1, N] \) (i.e., \(A_i \) Hurwitz).

- **Remark:** Thanks to Fenichel’s Uniformity Lemma (see [Colonius, Kliemann; 2000 – Lemma 5.2.7]), asymptotic and exponential stability are equivalent.
Stability analysis under arbitrary switching signals

Commuting matrices

\[\dot{x}(t) = A_{\sigma(t)} x(t), \quad \sigma(t) \in [1, N]. \]

Theorem (Narendra, Balakrishnan; 1994)

Assume that \(A_1, \ldots, A_N\) are Hurwitz and that \(A_i A_j = A_j A_i\) for every \(i, j \in [1, N]\). Then the system is exponentially stable for all switching signals and a Lyapunov function is given by

\[V(x) = x^T P x, \quad \text{where} \]

\[P = \int_{0}^{+\infty} e^{A_N^T t_N} \cdots \int_{0}^{+\infty} e^{A_2^T t_2} \int_{0}^{+\infty} e^{A_1^T t_1} e^{A_1 t_1} dt_1 e^{A_2 t_2} dt_2 \cdots e^{A_N t_N} dt_N \]
Stability analysis under arbitrary switching signals

Commuting matrices

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

Theorem (Narendra, Balakrishnan; 1994)

Assume that \(A_1, \ldots, A_N \) are Hurwitz and that \(A_iA_j = A_jA_i \) for every \(i, j \in [1, N] \). Then the system is exponentially stable for all switching signals and a Lyapunov function is given by

\[V(x) = x^TPx, \quad \text{where} \]

\[P = \int_0^{+\infty} e^{A_N t_N} \cdots \int_0^{+\infty} e^{A_2 t_2} \int_0^{+\infty} e^{A_1 t_1} dt_1 e^{A_2 t_2} dt_2 \cdots e^{A_N t_N} dt_N \]

Under commutativity, the necessary condition of having all \(A_i \)'s Hurwitz is also sufficient!
Stability analysis under arbitrary switching signals

Commuting matrices

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

Theorem (Narendra, Balakrishnan; 1994)

Assume that \(A_1, \ldots, A_N \) are Hurwitz and that \(A_iA_j = A_jA_i \) for every \(i, j \in [1, N] \). Then the system is exponentially stable for all switching signals and a Lyapunov function is given by

\[
V(x) = x^TPx,
\]

where

\[
P = \int_0^{+\infty} e^{A_N^Tt_N} \cdots \int_0^{+\infty} e^{A_2^Tt_2} \int_0^{+\infty} e^{A_1^Tt_1} e^{A_1 t_1} dt_1 e^{A_2 t_2} dt_2 \cdots e^{A_N t_N} dt_N
\]

Under commutativity, the necessary condition of having all \(A_i \)'s Hurwitz is also sufficient!
Stability analysis under arbitrary switching signals

Common quadratic Lyapunov functions

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

- Usual technique for stability analysis: look for a common quadratic Lyapunov function (CQLF) \(V(x) = x^T P x, \)

An introduction to switched systems

Guilherme Mazanti
Stability analysis under arbitrary switching signals
Common quadratic Lyapunov functions

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

- Usual technique for stability analysis: look for a common quadratic Lyapunov function (CQLF) \(V(x) = x^TPx, \)
- i.e., look for symmetric positive definite \(P \) such that \(V \) is a Lyapunov function for every isolated subsystem \(\dot{x}(t) = A_i x(t), \)
 \(i \in [1, N], \)
Stability analysis under arbitrary switching signals

Common quadratic Lyapunov functions

\[\dot{x}(t) = A_{\sigma(t)} x(t), \quad \sigma(t) \in [1, N]. \]

- Usual technique for stability analysis: look for a common quadratic Lyapunov function (CQLF) \(V(x) = x^T P x \), i.e., look for symmetric positive definite \(P \) such that \(V \) is a Lyapunov function for every isolated subsystem \(\dot{x}(t) = A_i x(t), \quad i \in [1, N] \),

- which is equivalent to finding a symmetric positive definite \(P \) such that \(A_i^T P + PA_i \) is negative definite for every \(i \in [1, N] \).
Stability analysis under arbitrary switching signals
Common quadratic Lyapunov functions

\[\dot{x}(t) = A_{\sigma(t)} x(t), \quad \sigma(t) \in [1, N]. \]

- Usual technique for stability analysis: look for a common quadratic Lyapunov function (CQLF) \(V(x) = x^T P x, \)
i.e., look for symmetric positive definite \(P \) such that \(V \) is a Lyapunov function for every isolated subsystem \(\dot{x}(t) = A_i x(t), \)
\(i \in [1, N], \)
which is equivalent to finding a symmetric positive definite \(P \) such that \(A_i^T P + PA_i \) is negative definite for every \(i \in [1, N]. \)
- Advantages: one can algorithmically determine if \(A_1, \ldots, A_N \) admit a CQLF. Some theoretical criteria also exist.
Stability analysis under arbitrary switching signals

Common quadratic Lyapunov functions

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

- Usual technique for stability analysis: look for a common quadratic Lyapunov function (CQLF) \(V(x) = x^TPx, \)
 - i.e., look for symmetric positive definite \(P \) such that \(V \) is a Lyapunov function for every isolated subsystem \(\dot{x}(t) = A_i x(t), \)
 \[i \in [1, N], \]
 - which is equivalent to finding a symmetric positive definite \(P \) such that \(A_i^TP + PA_i \) is negative definite for every \(i \in [1, N]. \)
- Advantages: one can algorithmically determine if \(A_1, \ldots, A_N \) admit a CQLF. Some theoretical criteria also exist.
- Major disadvantage: the existence of a CQLF is only a sufficient condition for exponential stability of the switched system.
Stability analysis under arbitrary switching signals

Common quadratic Lyapunov functions

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

Theorem (Liberzon, Hespanha, Morse; 1999)

Let \(\mathfrak{g} \) be the Lie algebra generated by \(\{A_1, \ldots, A_N\} \). If \(\mathfrak{g} \) is solvable, then the system admits a CQLF, and it is thus exponentially stable.
Stability analysis under arbitrary switching signals

Common quadratic Lyapunov functions

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

Theorem (Liberzon, Hespanha, Morse; 1999)

Let \(g \) be the Lie algebra generated by \(\{A_1, \ldots, A_N\} \). If \(g \) is solvable, then the system admits a CQLF, and it is thus exponentially stable.

Definition

Let \(g \) be a Lie algebra. Set \(g^{(0)} = g \), \(g^{(k+1)} = [g^{(k)}, g^{(k)}] \) for \(k \in \mathbb{N} \). We say that \(g \) is **solvable** if \(g^{(k)} = \{0\} \) for some \(k \in \mathbb{N} \).
Stability analysis under arbitrary switching signals
Common quadratic Lyapunov functions

\[\dot{x}(t) = A_{\sigma(t)} x(t), \quad \sigma(t) \in [1, N]. \]

Theorem (Liberzon, Hespanha, Morse; 1999)

Let \(g \) be the Lie algebra generated by \(\{A_1, \ldots, A_N\} \). If \(g \) is solvable, then the system admits a CQLF, and it is thus exponentially stable.

Definition

Let \(g \) be a Lie algebra. Set \(g^{(0)} = g \), \(g^{(k+1)} = [g^{(k)}, g^{(k)}] \) for \(k \in \mathbb{N} \). We say that \(g \) is **solvable** if \(g^{(k)} = \{0\} \) for some \(k \in \mathbb{N} \).

Other criteria: [Shorten, Narendra; 1999 and 2002], [Shorten, Narendra, Mason; 2003], [Gurvits, Shorten, Mason; 2007], [Laffey, Šmigoc; 2007]...

More on Lie algebraic stability criteria: [Agrachev, Liberzon; 2001], [Agrachev, Baryshnikov, Liberzon; 2012].
Some exponentially stable systems do not admit CQLF.

Example: $N = 2$, $A_1 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$, $A_2 = \begin{pmatrix} -1 & -10 \\ 1 \cdot 10 & -1 \end{pmatrix}$.

This switched system is exponentially stable (see [Dayawansa, Martin; 1999] for a proof), but does not admit a CQLF.
Stability analysis under arbitrary switching signals
Common quadratic Lyapunov functions

Some exponentially stable systems do not admit CQLF.

Example: $N = 2$, $A_1 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$, $A_2 = \begin{pmatrix} -1 & -10 \\ 10 & -1 \end{pmatrix}$.

This switched system is exponentially stable (see [Dayawansa, Martin; 1999] for a proof), but does not admit a CQLF.

- Indeed, if $V(x) = x^T P x$ is a CQLF, then $A_1^T P + PA_1$ and $A_2^T P + PA_2$ are negative definite.
Some exponentially stable systems do not admit CQLF.

Example: $N = 2$, $A_1 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$, $A_2 = \begin{pmatrix} -1 & -10 \\ 1 & -1 \end{pmatrix}$.

This switched system is exponentially stable (see [Dayawansa, Martin; 1999] for a proof), but does not admit a CQLF.

- Indeed, if $V(x) = x^TPx$ is a CQLF, then $A_1^TP + PA_1$ and $A_2^TP + PA_2$ are negative definite.

- Write $P = \begin{pmatrix} 1 & q \\ q & r \end{pmatrix}$. Using Sylvester’s criterion for positive-definiteness, one must have

\[
\frac{(r - 3)^2}{8} + q^2 < 1, \quad \frac{(r - 300)^2}{80000} + \frac{q^2}{100} < 1.
\]

- These two ellipses do not intersect: no CQLF.
Stability analysis under arbitrary switching signals

Worst trajectory

\[\dot{x}(t) = A_{\sigma(t)} x(t), \quad \sigma(t) \in [1, N]. \]

Another technique for stability analysis: study the worst trajectory.
Stability analysis under arbitrary switching signals

Worst trajectory

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

- Another technique for stability analysis: study the worst trajectory.
- Main idea: for a given initial condition \(x_0 \), find the switching signal \(\sigma \) such that the solution goes as far away from the origin as possible, using the techniques of optimal control.
- If such trajectory converges, all other trajectories also converge, and one has stability. Otherwise, the system is unstable.
- Very useful in dimension 2, much harder in dimension \(\geq 3 \).
Stability analysis under arbitrary switching signals

Worst trajectory

Example: \(N = 2, A_1 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}, A_2 = \begin{pmatrix} -1 & -10 \\ 1 & -1 \end{pmatrix}. \)
Stability analysis under arbitrary switching signals

Worst trajectory

Example: \(N = 2, A_1 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}, A_2 = \begin{pmatrix} -1 & -10 \\ \frac{1}{10} & -1 \end{pmatrix}. \)
Stability analysis under arbitrary switching signals

Worst trajectory

Example: \(N = 2, \ A_1 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}, \ A_2 = \begin{pmatrix} -1 & -10 \\ \frac{1}{10} & -1 \end{pmatrix} \).

- Both trajectories turn counterclockwise around the origin.
- The “worst trajectory” should be the one chosen such that, at each point, we pick the vector field directed further away from the origin (to justify this: M2 course “Geometric Control”).
Stability analysis under arbitrary switching signals

Worst trajectory

The vector fields are parallel on the lines defined by the equations

\[2x_1 + (\sqrt{161} + 11)x_2 = 0, \quad 2x_1 - (\sqrt{161} - 11)x_2 = 0. \]
Stability analysis under arbitrary switching signals

Worst trajectory

The vector fields are parallel on the lines defined by the equations

\[2x_1 + (\sqrt{161} + 11)x_2 = 0, \quad 2x_1 - (\sqrt{161} - 11)x_2 = 0. \]
Stability analysis under arbitrary switching signals

Converse Lyapunov theorems

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

Not all exponentially stable switched systems admit CQLFs.

Theorem (Molchanov, Pyatnitskiy; 1989)

The following are equivalent.
1. The switched system is exponentially stable.
2. The system admits a Lyapunov function of the form
 \[V(x) = x^T P(x) x, \]
 where \(P(\tau x) = P(x) \) for all \(x \in \mathbb{R}^d \setminus \{0\} \), \(\tau \in \mathbb{R} \setminus \{0\} \).
3. The system admits a piecewise quadratic Lyapunov function
 \[V(x) = \max_{i \in J_1, m} \langle p_i, x \rangle^2 \]
 for some \(p_1, \ldots, p_m \in \mathbb{R}^d \) such that \(m \geq d \) and \(p_1, \ldots, p_m \) span \(\mathbb{R}^d \).
4. The system admits a piecewise linear Lyapunov function
 \[V(x) = \max_{i \in J_1, m} |\langle p_i, x \rangle| \]
 for some \(p_1, \ldots, p_m \in \mathbb{R}^d \) as before.
Stability analysis under arbitrary switching signals
Converse Lyapunov theorems

\[\dot{x}(t) = A_{\sigma(t)} x(t), \quad \sigma(t) \in [1, N]. \]
Not all exponentially stable switched systems admit CQLFs.

Theorem (Molchanov, Pyatnitskiy; 1989)

The following are equivalent.

1. The switched system is exponentially stable.
2. The system admits a Lyapunov function of the form \(V(x) = x^T P(x)x \), where \(P(x)^T = P(x) = P(\tau x) \) for all \(x \in \mathbb{R}^d \setminus \{0\}, \tau \in \mathbb{R} \setminus \{0\} \).
Stability analysis under arbitrary switching signals

Converse Lyapunov theorems

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

Not all exponentially stable switched systems admit CQLFs.

Theorem (Molchanov, Pyatnitskiy; 1989)

The following are equivalent.

1. **The switched system is exponentially stable.**
2. **The system admits a Lyapunov function of the form** \(V(x) = x^T P(x)x \), **where** \(P(x)^T = P(x) = P(\tau x) \) **for all** \(x \in \mathbb{R}^d \setminus \{0\}, \tau \in \mathbb{R} \setminus \{0\} \).
3. **The system admits a piecewise quadratic Lyapunov function** \(V(x) = \max_{i \in [1, m]} \langle p_i, x \rangle^2 \) **for some** \(p_1, \ldots, p_m \in \mathbb{R}^d \) **such that** \(m \geq d \) **and** \(p_1, \ldots, p_m \) **span** \(\mathbb{R}^d \).
Stability analysis under arbitrary switching signals
Converse Lyapunov theorems

\[\dot{x}(t) = A_{\sigma(t)} x(t), \quad \sigma(t) \in [1, N]. \]

Not all exponentially stable switched systems admit CQLFs.

Theorem (Molchanov, Pyatnitskiy; 1989)

The following are equivalent.

1. The switched system is exponentially stable.
2. The system admits a Lyapunov function of the form \(V(x) = x^\top P(x)x \), where \(P(x)^\top = P(x) = P(\tau x) \) for all \(x \in \mathbb{R}^d \setminus \{0\}, \tau \in \mathbb{R} \setminus \{0\} \).
3. The system admits a piecewise quadratic Lyapunov function \(V(x) = \max_{i \in [1,m]} \langle p_i, x \rangle^2 \) for some \(p_1, \ldots, p_m \in \mathbb{R}^d \) such that \(m \geq d \) and \(p_1, \ldots, p_m \) span \(\mathbb{R}^d \).
4. The system admits a piecewise linear Lyapunov function \(V(x) = \max_{i \in [1,m]} |\langle p_i, x \rangle| \) for some \(p_1, \ldots, p_m \in \mathbb{R}^d \) as before.
Stability analysis under arbitrary switching signals
Converse Lyapunov theorems

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

Theorem (Mason, Boscain, Chitour; 2006)

The switched system is exponentially stable if and only if it admits a polynomial Lyapunov function.
\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N]. \]

Theorem (Mason, Boscain, Chitour; 2006)

1. The switched system is exponentially stable if and only if it admits a polynomial Lyapunov function.

2. For every \(m \in \mathbb{N} \), there exist exponentially stable switched systems which do not admit polynomial Lyapunov functions of degree \(\leq m \).
\[
\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in [1, N].
\]

Theorem (Mason, Boscain, Chitour; 2006)

1. The switched system is exponentially stable if and only if it admits a polynomial Lyapunov function.

2. For every \(m \in \mathbb{N} \), there exist exponentially stable switched systems which do not admit polynomial Lyapunov functions of degree \(\leq m \).

Even when one can prove Lyapunov functions exist, they can be hard to compute!
Stability analysis under arbitrary switching signals
Classification of stable planar switched systems with two modes

\[\dot{x}(t) = A_{\sigma(t)} x(t), \quad \sigma(t) \in \{1, 2\}, \ x(t) \in \mathbb{R}^2. \]

A complete stability analysis of such system was carried out in [Balde, Boscain, Mason; 2009].
Stability analysis under arbitrary switching signals
Classification of stable planar switched systems with two modes

\[\dot{x}(t) = A_{\sigma(t)}x(t), \quad \sigma(t) \in \{1, 2\}, \quad x(t) \in \mathbb{R}^2. \]

A complete stability analysis of such system was carried out in [Balde, Boscain, Mason; 2009].

Define:

\[\delta_X = \text{Tr}(X)^2 - 4 \det(X), \]
\[\Gamma(X, Y) = \frac{1}{2} (\text{Tr}(X) \text{Tr}(Y) - \text{Tr}(XY)). \]

Set

\[\tau_i = \begin{cases}
\text{Tr}(A_i)/\sqrt{|\delta_{A_i}|} & \text{if } \delta_{A_1} \neq 0, \delta_{A_2} \neq 0, \\
\text{Tr}(A_i)/\sqrt{|\delta_{A_j}|} & \text{if } \delta_{A_1} \delta_{A_2} = 0 \text{ and } \delta_{A_j} \neq 0, \\
\text{Tr}(A_i)/2 & \text{if } \delta_{A_1} = \delta_{A_2} = 0,
\end{cases} \quad i \in \{1, 2\}, \]
Stability analysis under arbitrary switching signals
Classification of stable planar switched systems with two modes

\[k = \frac{2\tau_1 \tau_2}{\text{Tr}(A_1) \text{Tr}(A_2)} \left(\text{Tr}(A_1 A_2) - \frac{1}{2} \text{Tr}(A_1) \text{Tr}(A_2) \right), \]

\[\Delta = 4 \left(\Gamma(A_1, A_2)^2 - \Gamma(A_1, A_1) \Gamma(A_2, A_2) \right), \]

\[t_i = \begin{cases}
\frac{\pi}{2} - \arctan \left(\frac{\text{Tr}(A_1) \text{Tr}(A_2)(k\tau_i + \tau_{3-i})}{2\tau_1 \tau_2 \sqrt{\Delta}} \right) & \text{if } \delta_{A_i} < 0, \\
\arctanh \left(\frac{2\tau_1 \tau_2 \sqrt{\Delta}}{\text{Tr}(A_1) \text{Tr}(A_2)(k\tau_i - \tau_{3-i})} \right) & \text{if } \delta_{A_i} > 0, \\
\frac{2 \sqrt{\Delta}}{\left(\text{Tr}(A_1 A_2) - \frac{1}{2} \text{Tr}(A_1) \text{Tr}(A_2) \right) \tau_i} & \text{if } \delta_{A_i} = 0,
\end{cases} \]

\[R = \frac{2\Gamma(A_1, A_2) + \sqrt{\Delta}}{2\sqrt{\det(A_1) \det(A_2)}} e^{\tau_1 t_1 + \tau_2 t_2}. \]
Stability analysis under arbitrary switching signals
Classification of stable planar switched systems with two modes

Theorem (Balde, Boscain, Mason; 2009)

If $\Gamma(A_1, A_2) > -\sqrt{\det(A_1) \det(A_2)}$ and
$\text{Tr}(A_1 A_2) > -2\sqrt{\det(A_1) \det(A_2)}$, then the switched system
admits a CQLF and is thus exponentially stable.
Stability analysis under arbitrary switching signals
Classification of stable planar switched systems with two modes

Theorem (Balde, Boscain, Mason; 2009)

1. If \(\Gamma(A_1, A_2) > -\sqrt{\det(A_1) \det(A_2)} \) and \(\text{Tr}(A_1 A_2) > -2 \sqrt{\det(A_1) \det(A_2)} \), then the switched system admits a CQLF and is thus exponentially stable.

2. If \(\Gamma(A_1, A_2) < -\sqrt{\det(A_1) \det(A_2)} \), then the switched system is unstable.
Stability analysis under arbitrary switching signals
Classification of stable planar switched systems with two modes

Theorem (Balde, Boscain, Mason; 2009)

1. If $\Gamma(A_1, A_2) > -\sqrt{\det(A_1) \det(A_2)}$ and $\text{Tr}(A_1 A_2) > -2\sqrt{\det(A_1) \det(A_2)}$, then the switched system admits a CQLF and is thus exponentially stable.

2. If $\Gamma(A_1, A_2) < -\sqrt{\det(A_1) \det(A_2)}$, then the switched system is unstable.

3. If $\Gamma(A_1, A_2) = -\sqrt{\det(A_1) \det(A_2)}$, then the system is stable, but not asymptotically stable.
Stability analysis under arbitrary switching signals
Classification of stable planar switched systems with two modes

Theorem (Balde, Boscain, Mason; 2009)

1. If $\Gamma(A_1, A_2) > -\sqrt{\det(A_1) \det(A_2)}$ and $\text{Tr}(A_1 A_2) > -2\sqrt{\det(A_1) \det(A_2)}$, then the switched system admits a CQLF and is thus exponentially stable.

2. If $\Gamma(A_1, A_2) < -\sqrt{\det(A_1) \det(A_2)}$, then the switched system is unstable.

3. If $\Gamma(A_1, A_2) = -\sqrt{\det(A_1) \det(A_2)}$, then the system is stable, but not asymptotically stable.

4. If $\Gamma(A_1, A_2) > \sqrt{\det(A_1) \det(A_2)}$ and $\text{Tr}(A_1 A_2) \leq -2\sqrt{\det(A_1) \det(A_2)}$, then the system is exponentially stable if $R < 1$, stable but not asymptotically stable if $R = 1$, and unstable if $R > 1$.

An introduction to switched systems

Guilherme Mazanti
This talk has only discussed uncontrolled switching signals. The case of controlled switching is of much importance, in particular stabilization by switching.
This talk has only discussed uncontrolled switching signals. The case of controlled switching is of much importance, in particular stabilization by switching.

Random models for switching signals are also of much importance in practical situations, as well as state-dependent switching.
This talk has only discussed uncontrolled switching signals. The case of controlled switching is of much importance, in particular stabilization by switching.

Random models for switching signals are also of much importance in practical situations, as well as state-dependent switching.

We have only considered linear systems. The case of non-linear systems (with different equilibrium points!) is also of much importance.
To go further

- This talk has only discussed uncontrolled switching signals. The case of controlled switching is of much importance, in particular stabilization by switching.

- Random models for switching signals are also of much importance in practical situations, as well as state-dependent switching.

- We have only considered linear systems. The case of non-linear systems (with different equilibrium points!) is also of much importance.

- The theory of switched systems is very rich and still developing, with much work to be done.
Conclusion

References

Books:

Surveys:
