Anomaly Detection and Pattern discovery for Predictive Maintenance

Paul Boniol
Paris Descartes University

Edouard Mehlman
Paris Descartes University

Themis Palpanas
Institut Universitaire de France
Paris Descartes University

Niklas Boers
Paris Descartes University

PGMO Days, November 2017
Motivation

- data series from sensors monitoring operation health of various equipment
- most sensed values are normal
- wish to identify anomalies in observed values and trends
 - these can then be used to predict abnormal behavior
 - perform predictive maintenance
Problem

• develop anomaly detection techniques based on sequences (data series), not on individual values
 ○ individual values can be normal, but their sequence can be abnormal!
Problem

● develop anomaly detection techniques based on sequences (data series), not on individual values

○ individual values can be normal, but their sequence can be abnormal!

150 points in a sequence S

values are not outside critical thresholds

values are normal
Problem

● develop anomaly detection techniques based on sequences (data series), not on individual values
 ○ individual values can be normal, but their sequence can be abnormal!
Context : What data?

Target Sensor

Parameter sensors (PRE, PUI, TEMP, VIT, etc)
First approach: detection of predefined anomaly types
Specific type anomaly detection techniques

● Define a score function for each anomaly type specified by the domain expert
 ○ **Trend** (up and down): gradual value increase/decrease
 ○ **Step**: sudden value increase/decrease
 ○ **Spike**: sudden value peak in short period of time
 ○ **Oscillation**: high frequency and amplitude value oscillation in short period of time

● Then go through the dataset to identify these anomalies
Trend Anomaly

Slope of the linear regression on a specific window length
Step Anomaly

\[\forall i \in [0, \text{length}(s) - 1] \quad \text{score}[t_i] = |\text{median}(s_{j \in [i+1, i+w]}) - \text{median}(s_{j \in [i-w, i-1]})| \]
Spike Anomaly

\[\forall i \in [0, \text{length}(s) - 1] \quad \text{score}[t_i] = |s_{i+1} - s_i| \]
Oscillation Anomaly

\[\forall i \in [0, \text{length}(s) - 1] \quad \text{score}[t_i] = \frac{\sum_{j=i-w}^{i+w} \text{var}(s_{j-v:j+v})}{2 \times w} \]
Anomalies of varying durations

We compute each score for different window lengths:

- 1 day, 7 days, 30 days, 180 days for the trends
- 6h, 1 day, 7 days for the steps
- 10 minutes for the spike
- 3 hours for the oscillation
Threshold T

Most important anomalies
Shortcomings of previous method

- Hard-coded formulas: do not generalize to other applications
 - Need to define score function and threshold for each anomaly type
- Need to go through all the data for each anomaly, and for each length
- Supervised operation
Second approach: detection of abnormal sequences
Core idea

- define normal behavior
- identify subsequences that look different from normal
- propose scalable algorithm
 - based on Matrix Profile technique
What is matrix profile?

The matrix profile is a meta-data structure that gives information about:

- Discords
- Recurrent patterns
What is matrix profile?

The matrix profile is a meta-data structure that gives information about:

- Discords
- Recurrent patterns
What is matrix profile?

The matrix profile is a meta-data structure that gives information about:

- Discords
- Recurrent patterns
Our anomaly detection approach

- we extract subsequences of normal behavior, called Ground Truth (GT)
 - can be extracted automatically and/or with the help of domain experts

- we use the matrix profile to efficiently identify:
 - subsequences that are not similar to GT
 - and that may repeat (approximately the same)
Ground Truth (GT) example
$\text{GT} \otimes_{m} \text{mA}$

GT (length m)

series S (length M)

sequences in S that are very different from GT
$S \otimes_m S$

series S (length M)

sequences in S that repeat
anomalous subsequences
anomalous subsequences
anomalous subsequences
Clustering of anomalies

subsequences grouped according to their shape
Summary

- benefits:
 - unsupervised method
 - fast execution time
 - identification of anomalies of all types
Summary

- benefits:
 - unsupervised method
 - fast execution time (10min/length)
 - identification of anomalies of all types
 - detection of non-defined anomalies!
 - and more!
Ongoing work
anomaly prediction
Predicting using sequence of events

Goal: *Predict the type of anomaly that will occur next*

Anomaly feature:
- target sensor: cluster 1

Anomaly of type 3
Predicting using sequence of events

Goal: *Predict the type of anomaly that will occur next*
Predicting using sequence of events

Goal: *Predict the type of anomaly that will occur next*

Anomaly feature:
- target sensor: cluster 1

Anomaly feature:
- target sensor: cluster 2

Anomaly feature:
- target sensor: cluster 3
Goal: Predict the type of anomaly that will occur next
Analyze prefix and suffix of patterns

Pattern of length 2500 point (~ 2 weeks)

Pattern of length 11000 point (~ 2 months)
Analyze prefix and suffix of patterns
Analyze prefix and suffix of patterns

Suffix / consequence

Prefix 1

Prefix 2
Conclusions
Conclusions

● operational monitoring becomes increasingly important
 ○ leads to very large collections of sensor data series

● these data have to be analyzed in their full detail
 ○ analyze raw data, not summaries
 ○ analyze sequences, not individual values
Conclusions

- operational monitoring becomes increasingly important
 - leads to very large collections of sensor data series

- these data have to be analyzed in their full detail
 - analyze raw data, not summaries
 - analyze sequences, not individual values

- proposed solutions for data series anomaly detection
 - easy to use: unsupervised
 - general: detect anomalies of different types
 - effective: produce results interesting to experts (not identified before)
 - efficient: fast execution time

- these results can be used for predictive maintenance
Thank you!
Questions?