Polynomial Feedback Laws for Infinite-Dimensional Bilinear Optimal Control Problems

Laurent Pfeiffer
Institute for Mathematics and Scientific Computing, University of Graz
Joint work with Tobias Breiten and Karl Kunisch

PGMO Days
Palaiseau
November 14, 2017
We consider the following **bilinear optimal control problem**:

\[
\inf_{u \in L^2(0,\infty)} \mathcal{J}(u, y_0) := \int_0^\infty \frac{1}{2} \|y(t)\|^2_Y + \frac{\beta}{2} |u(t)|^2 dt,
\]

where:

\[
\begin{cases}
\dot{y}(t) = Ay(t) + Ny(t)u(t) + Bu(t), \\
y(0) = y_0 \in Y,
\end{cases}
\]

with associated **value function**:

\[\mathcal{V}(y_0) := \inf_{u \in L^2(0,\infty)} \mathcal{J}(u, y_0)\]

Main assumption: \(\exists F \in \mathcal{L}(Y, \mathbb{R})\) such that \(\dot{y} = Ay + BFy\) is exponentially stable.

Goal: analysing theoretically and numerically polynomial **feedback laws** derived from **Taylor expansions** of \(\mathcal{V}\) around 0.
1 Theory

2 Numerics
1 Theory

2 Numerics
We construct a polynomial \mathcal{V}_p of the form:

$$
\mathcal{V}_p(y_0) = \frac{1}{2} \mathcal{T}_2(y_0, y_0) + \frac{1}{3!} \mathcal{T}_3(y_0, y_0, y_0) + \cdots + \frac{1}{p!} \mathcal{T}_p(y_0, \ldots, y_0),
$$

where $\mathcal{T}_k : Y^k \to \mathbb{R}$ is a bounded multilinear form (of order k). We show a posteriori that \mathcal{V}_p is a Taylor expansion of \mathcal{V} around 0.

More precisely,

- \mathcal{T}_2 is constructed as the solution to an algebraic Riccati equation (ARE)
- $\mathcal{T}_3, \mathcal{T}_4, \ldots$ are constructed as solutions to (linear) generalized Lyapunov equations (GLE).
First step: **formal** derivation of the **Hamilton-Jacobi-Bellman** equation, by dynamic programming.

Proposition

Assume that there exists a neighborhood Y_0 of 0 such that

1. Problem $P(y_0)$ has a continuous solution u, $\forall y_0 \in D(A) \cap Y_0$
2. The value function is continuously differentiable on Y_0.

Then, for all $y_0 \in D(A) \cap Y_0$,

$$
DV(y_0)Ay_0 + \frac{1}{2}\|y_0\|_Y^2 - \frac{1}{2\beta}(DV(y_0)(Ny_0 + B))^2 = 0. \quad \text{(HJB)}
$$

Moreover, for all continuous solutions u to problem $P(y_0)$,

$$
u(0) = -\frac{1}{\beta}DV(y_0)(Ny + B).
$$
Taylor expansion

The equations characterizing \((T_k)_{k=2,3,...}\) are then obtained by **formal differentiation** of the HJB equation and identification with \((D^k \mathcal{V}(0))_{k=2,3,...}\).

Remark: \(\mathcal{V}(0) = 0, \ D\mathcal{V}(0) = 0\).

Differentiating the HJB equation a first time w.r.t. \(y\) in the direction \(z_1 \in \mathcal{D}(A)\) yields

\[D^2 \mathcal{V}(y)(Ay, z_1) + D\mathcal{V}(y)Az_1 + \langle y, z_1 \rangle Y \]
\[- \frac{1}{\beta} (D^2 \mathcal{V}(y)(Ny + B, z_1) + D\mathcal{V}(y)Nz_1)(D\mathcal{V}(y)(Ny + B)) = 0. \]
Differentiating a second time, we obtain

\[
D^3 \mathcal{V}(y)(Ay, z_1, z_2) + D^2 \mathcal{V}(y)(Az_2, z_1) + D^2 \mathcal{V}(y)(Az_1, z_2) + \langle z_1, z_2 \rangle \gamma \\
- \frac{1}{\beta} \left(D^2 \mathcal{V}(y)(Ny + B, z_1) + D\mathcal{V}(y)Nz_1 \right) \left(D^2 \mathcal{V}(y)(Ny + B, z_2) + D\mathcal{V}(y)Nz_2 \right) \\
- \frac{1}{\beta} \left(D^3 \mathcal{V}(y)(Ny + B, z_1, z_2) \right) \left(D\mathcal{V}(y)(Ny + B) \right) \\
- \frac{1}{\beta} \left(D^2 \mathcal{V}(y)(Nz_2, z_1) + D^2 \mathcal{V}(y)(Nz_1, z_2) \right) \left(D\mathcal{V}(y)(Ny + B) \right) = 0.
\]

For \(y = 0 \), using the representation \(D^2 \mathcal{V}(0)(z_1, z_2) = \langle z_1, \Pi z_2 \rangle \), where \(\Pi : Y \to Y \), we obtain an algebraic Riccati equation:

\[
A^* \Pi + \Pi A + \text{Id} - \frac{1}{\beta} \Pi BB^* \Pi = 0. \quad \text{(ARE)}
\]

It has a unique self-adjoint and non-negative solution.
Taylor expansion

Differentiating a third time, we obtain for \(y = 0 \):

\[
D^3 \mathcal{V}(0)(Az_3, z_1, z_2) + D^3 \mathcal{V}(0)(Az_2, z_1, z_3) + D^3 \mathcal{V}(0)(Az_1, z_2, z_3)
\]

\[- \frac{1}{\beta} \left(D^3 \mathcal{V}(0)(B, z_1, z_3) + D^2 \mathcal{V}(0)(Nz_3, z_1) + D^2 \mathcal{V}(0)(Nz_1, z_3) \right) D^2 \mathcal{V}(0)(B, z_2) \]

\[- \frac{1}{\beta} \left(D^3 \mathcal{V}(0)(B, z_2, z_3) + D^2 \mathcal{V}(0)(Nz_3, z_2) + D^2 \mathcal{V}(0)(Nz_2, z_3) \right) D^2 \mathcal{V}(0)(B, z_1) \]

\[- \frac{1}{\beta} \left(D^3 \mathcal{V}(0)(B, z_1, z_2) + D^2 \mathcal{V}(0)(Nz_2, z_1) + D^2 \mathcal{V}(0)(Nz_1, z_2) \right) D^2 \mathcal{V}(0)(B, z_3) = 0. \]

We set: \(A_\Pi = A - \frac{1}{\beta} BB^* \Pi \), we obtain:

\[
D^3 \mathcal{V}(0)(A_\Pi z_1, z_2, z_3) + D^3 \mathcal{V}(0)(z_1, A_\Pi z_2, z_3) + D^3 \mathcal{V}(0)(z_1, z_2, A_\Pi z_3)
\]

\[= \frac{1}{2\beta} \mathcal{R}_3(z_1, z_2, z_3), \quad \forall (z_1, z_2, z_3) \in \mathcal{D}(A)^3, \]

where the trilinear form \(\mathcal{R}_3 : \mathcal{Y}^3 \to \mathbb{R} \) is determined by \(\Pi, N, \) and \(B \).
Further differentiation provides a linear equation, called **generalized Lyapunov equation**, with the following structure:

$$D^k \mathcal{V}(0)(A \Pi z_1, z_2, \ldots, z_k) + \ldots + D^k \mathcal{V}(0)(z_1, \ldots, z_{k-1}, A \Pi z_k) = \frac{1}{2\beta} \mathcal{R}_k(z_1, \ldots, z_k), \quad \forall (z_1, \ldots, z_k) \in \mathcal{D}(A)^k \quad (\text{GLE}(k))$$

where the multilinear form $\mathcal{R}_k: Y^k \to \mathbb{R}$ is determined by Π, $D^3 \mathcal{V}(0), \ldots, D^{k-1} \mathcal{V}(0)$, N, and B.

Remark: end of the formal computations.

Theorem

There exists a unique sequence $(T_k)_{k=3,4,\ldots}$ of symmetric bounded multilinear forms such that $T_k: Y^k \to \mathbb{R}$ is a solution to GLE(k).
Feedback law

Polynomial \mathcal{V}_p of degree p:

$$
\mathcal{V}_p(y) = \sum_{k=2}^{p} \frac{1}{k!} T_k(y, \ldots, y).
$$

Feedback law u_p of order p:

$$
u_p: y \in Y \mapsto u_p(y) = -\frac{1}{\beta} D\mathcal{V}_p(y)(Ny + B).
$$

Closed-loop system of order p:

$$
\dot{y}_p(t) = Ay_p(t) + (Ny_p(t) + B)u_p(y_p(t)), \quad y(0) = y_0.
$$

Open-loop control $U_p(y_0)$ generated by the feedback u_p and y_0:

$$
U_p(y_0; t) = u_p(y_p(t)).
$$
Theoretical results

Theorem

For all $p \geq 2$, there exist two constants $\delta > 0$ and $C > 0$ such that for all $y_0 \in Y$ with $\|y_0\|_Y \leq \delta$:

1. The closed-loop system is well-posed and generates an open-loop control in $L^2(0, \infty)$ such that:

 $$ J(U_p(y_0), y_0) \leq V(y_0) + C\|y_0\|^{p+1}_Y. $$

2. It holds:

 $$ |V(y_0) - V_p(y_0)| \leq C\|y_0\|^{p+1}. $$

Remark: local result, δ decreases as β decreases and p increases.
1 Theory

2 Numerics
Numerical approach

1. **Discretize** the operators A, N, and B in such a way that the bilinear structure is preserved (e.g. with finite differences).

2. Find a **reduced-order** model with a generalization of the balanced truncation method:

 \[
 \inf_{u \in L^2(0,\infty)} J(u, y_0) := \int_0^\infty \frac{1}{2} \| C_r y_r(t) \|_{\mathbb{R}^n}^2 + \frac{\beta}{2} |u(t)|^2 dt,
 \]

 where:

 \[
 \begin{aligned}
 \dot{y}_r(t) &= A_r y_r(t) + N_r y_r(t)u(t) + B_r u(t), \\
 y_r(0) &= y_{0,r} \in Y.
 \end{aligned}
 \]

3. Solve the reduced GLE with a **tensor-calculus technique**.
Lyapunov equations

The associated reduced GLE of order k:

$$T_{k,r}(A\Pi,rz_1,z_2,\ldots,z_k) + \ldots + T_{k,r}(z_1,\ldots,z_{k-1},A\Pi,rz_k) = \frac{1}{2\beta} R_{k,r}(z_1,\ldots,z_k)$$

is equivalent to a linear system with r^k variables. Solution:

$$T_{k,r}(z_1,\ldots,z_k) = -\int_0^\infty R_{k,r}(e^{A\Pi,r}t z_1,\ldots,e^{A\Pi,r}t z_k)dt.$$

An approximation is given by:

$$\sum_{i=-\ell}^{\ell} w_i R_{k,r}(e^{A\Pi,r}t_i z_1,\ldots,e^{A\Pi,r}t_i z_k),$$

for an appropriate choice of points t_i and weights w_i.
Fokker-Planck equation

Controlled Fokker-Planck equation:

\[\frac{\partial \rho}{\partial t} = \nu \Delta \rho + \nabla \cdot (\rho \nabla G) + u \nabla \cdot (\rho \nabla \alpha_j) \quad \text{in } \Omega \times (0, \infty), \]

\[0 = (\nu \nabla \rho + \rho \nabla G) \cdot \vec{n} \quad \text{on } \Gamma \times (0, \infty), \]

\[\rho(x, 0) = \rho_0(x) \quad \text{in } \Gamma, \]

where \(\Omega \in \mathbb{R}^d \) denotes a bounded domain with smooth boundary \(\Gamma \).

For all \(t \), \(\rho(\cdot, t) \) is the probability density function of \(X_t \), sol. to

\[dX(t) = -\nabla_x V(X(t), t) dt + \sqrt{2\nu} dW_t, \]

where the potential \(V \) is controlled by \(u \):

\[V(x, t) = G(x) + u(t) \alpha(x), \quad \forall x \in \Omega, \forall t \geq 0. \]
The uncontrolled Fokker-Planck equation is known to converge to its stationary distribution ρ_∞.

(a) Ground potential

(b) Stationary distribution
Optimal control problem:
\[
\inf_{u \in L^2(0, \infty)} \int_0^\infty \frac{1}{2} \| \rho(\cdot, t) - \rho_\infty(\cdot) \|_{L^2(\Omega)}^2 + \beta |u(t)|^2 dt,
\]
where \(\rho \) satisfies the Fokker-Planck equation.

Under regularity assumptions on \(G \) and \(\alpha \), the problem can be reformulated, so that it falls in the abstract framework.

- Control shape function \(\alpha(x) \approx x/12 \).
- Discretization of \(\Omega = (-6, 6) \): \(n = 100 \).
- Reduction: \(r = 21 \) (selection of singular values above \(10^{-6} \)).
- Results for two initial values (a close one/a further one), different values of \(\beta \).
Numerical results (test case 1)

(a) Initial/stationary distributions
(b) Controls for $\beta = 10^{-3}$
Numerical results (test case 1)

(a) Controls for $\beta = 10^{-4}$

(b) Controls for $\beta = 10^{-5}$
Numerical results (test case 1)

(a) Cost of the controls u_p

<table>
<thead>
<tr>
<th>β</th>
<th>$J(u_2)$</th>
<th>$J(u_3)$</th>
<th>$J(u_4)$</th>
<th>$J(u_5)$</th>
<th>$J(u_6)$</th>
<th>$J(u_{\text{opt}})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10^{-3}</td>
<td>0.156</td>
<td>0.155</td>
<td>0.155</td>
<td>0.155</td>
<td>0.155</td>
<td>0.154</td>
</tr>
<tr>
<td>1×10^{-4}</td>
<td>0.138</td>
<td>0.122</td>
<td>0.120</td>
<td>0.120</td>
<td>0.120</td>
<td>0.119</td>
</tr>
<tr>
<td>1×10^{-5}</td>
<td>0.205</td>
<td>0.194</td>
<td>0.104</td>
<td>0.111</td>
<td>0.113</td>
<td>0.095</td>
</tr>
</tbody>
</table>

(b) L^2-distance between the controls u_p and the optimal control u_{opt}

<table>
<thead>
<tr>
<th>β</th>
<th>$p = 2$</th>
<th>$p = 3$</th>
<th>$p = 4$</th>
<th>$p = 5$</th>
<th>$p = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10^{-3}</td>
<td>1.149</td>
<td>0.169</td>
<td>0.119</td>
<td>0.034</td>
<td>0.031</td>
</tr>
<tr>
<td>1×10^{-4}</td>
<td>18.50</td>
<td>7.02</td>
<td>3.16</td>
<td>4.01</td>
<td>1.52</td>
</tr>
<tr>
<td>1×10^{-5}</td>
<td>90.5</td>
<td>78.0</td>
<td>39.0</td>
<td>42.6</td>
<td>34.3</td>
</tr>
</tbody>
</table>
Numerical results (test case 2)

(a) Initial/stationary distributions

(b) Controls for $\beta = 10^{-2}$
Numerical results (test case 2)

(a) Controls for $\beta = 10^{-3}$

(b) Controls for $\beta = 10^{-4}$
Numerical results

<table>
<thead>
<tr>
<th>β</th>
<th>$J(u_2)$</th>
<th>$J(u_3)$</th>
<th>$J(u_4)$</th>
<th>$J(u_5)$</th>
<th>$J(u_6)$</th>
<th>$J(u_{\text{opt}})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1e^{-2}$</td>
<td>0.788</td>
<td>0.788</td>
<td>0.788</td>
<td>0.788</td>
<td>0.788</td>
<td>0.787</td>
</tr>
<tr>
<td>$1e^{-3}$</td>
<td>0.525</td>
<td>0.511</td>
<td>0.511</td>
<td>0.512</td>
<td>0.510</td>
<td>0.507</td>
</tr>
<tr>
<td>$1e^{-4}$</td>
<td>0.381</td>
<td>0.368</td>
<td>2.689</td>
<td>∞</td>
<td>∞</td>
<td>0.246</td>
</tr>
</tbody>
</table>

(a) Cost of the controls u_p

<table>
<thead>
<tr>
<th>β</th>
<th>$|u_p - u_{\text{opt}}|_{L^2(0,T)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p = 2$</td>
</tr>
<tr>
<td>$1e^{-2}$</td>
<td>0.19</td>
</tr>
<tr>
<td>$1e^{-3}$</td>
<td>4.88</td>
</tr>
<tr>
<td>$1e^{-4}$</td>
<td>46.34</td>
</tr>
</tbody>
</table>

(b) L^2-distance between the controls u_p and the optimal control u_{opt}
Conclusion

Summary:

- General method for deriving polynomial feedback laws
- Implementation for an infinite-dimensional problem thanks to model reduction
- Good results, but only locally.

P. Benner, T. Damm. Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems, SICON, 2011. → **Model reduction.**

