Strong uniform value in gambling houses and partially observable Markov decision processes

Xavier Venel
(PSE, CES, University Paris 1 Panthéon-Sorbonne)

with Bruno Ziliotto (CNRS, Paris-Dauphine)

PGMO days (13-14 November)
1. Introduction
 - The model
 - Evaluation of the game

2. Results (old and new)

3. Outline of the proof
1. **Introduction**
 - The model
 - Evaluation of the game

2. **Results (old and new)**

3. **Outline of the proof**
Introduction

The model

Outline

1. Introduction
 - The model
 - Evaluation of the game

2. Results (old and new)

3. Outline of the proof
We consider $\Gamma = (K, A, S, q, g)$ a MDP with partial observation (POMDP):

- a finite state space K,
- a finite set of actions A,
- a finite set of signals S,
- a transition $q : K \times A \rightarrow \Delta(K \times S)$,
- a stage payoff $g : K \rightarrow [0, 1]$.
Given $p \in \Delta(K)$, $\Gamma(p)$ is played as following:

- **Stage 0**: a state k_1 is chosen along p.
- **Stage 1**:
 - the decision maker chooses an action a_1,
 - he receives the (unobserved) payoff $g(k_1)$,
 - a couple (k_2, s_1) is chosen according to $q(k_1, a_1)$.
 - s_1 is announced to the decision maker.
- **Stage 2**: the decision maker chooses etc ...
An example: $K = \{0^*, 0_1, 0_2, 1^*\}$, $A = \{Blue, Red\}$, $S = \{s_1, s_2\}$
Definition of strategies

Definition

- **A behavior strategy** for the decision-maker is a function
 \[\sigma : \bigcup_{t \geq 1} (A \times S)^{t-1} \rightarrow \Delta(A). \]
 The set of such strategies is denoted \(\Sigma \).

- **A pure strategy** for the decision-maker is a function
 \[\sigma : \bigcup_{t \geq 1} (A \times S)^{t-1} \rightarrow A. \]

A pair \((p, \sigma)\) induces a probability measure \(\mathbb{P}_\sigma^p \) on \((K \times A \times S)^{\mathbb{N}^*}\).

A behavior strategy for the decision-maker is a function
\[\sigma : \bigcup_{t \geq 1} (A \times S)^{t-1} \rightarrow \Delta(A). \]
The set of such strategies is denoted \(\Sigma \).

A pure strategy for the decision-maker is a function
\[\sigma : \bigcup_{t \geq 1} (A \times S)^{t-1} \rightarrow A. \]

A pair \((p, \sigma)\) induces a probability measure \(P^\sigma_p \) on \((K \times A \times S)^{\mathbb{N}^*}\).
Introduction
Evaluation of the game

Outline

1. Introduction
 - The model
 - Evaluation of the game

2. Results (old and new)

3. Outline of the proof
Asymptotic approach

Let \(n \in \mathbb{N}^* \). \textit{n-stage decision problem}: \(\Gamma_n^p = (\Sigma, \gamma_n^p) \) is the problem where

\[
\gamma_n^p(\sigma) := \mathbb{E}_\sigma^p \left(\frac{1}{n} \sum_{t=1}^{n} g(k_t, a_t) \right).
\]

We denote by

\[
v_n(p) = \max_{\sigma \in \Sigma} \gamma_n^p(\sigma) = \max_{\sigma \in \Sigma_{\text{pure}}} \gamma_n^p(\sigma).
\]

Definition

\(\Gamma \) has an \textbf{asymptotic value} if \((v_n) \) converges pointwise to some function \(v_\infty : \Delta(K) \rightarrow \mathbb{R} \).
Uniform approach

Definition

The decision problem $\Gamma(p)$ has a uniform value if it has an asymptotic value $v_\infty(p)$, and

$$\sup_{\sigma \in \Sigma} \left(\liminf_{n \to +\infty} E_p^\sigma \left(\frac{1}{n} \sum_{t=1}^{n} g(k_t, a_t) \right) \right) = v_\infty(p).$$ \hfill (1)
Pathwise approach

A third approach is to consider the infinitely repeated POMDP where the payoff of the strategy σ is given by

$$\gamma^p_\infty(\sigma) = \mathbb{E}_\sigma^p \left(\lim_{n \to +\infty} \inf \frac{1}{n} \sum_{t=1}^{n} g(k_t, a_t) \right)$$

We denote by

$$w_\infty(p) = \max_{\sigma \in \Sigma} \gamma^p_\infty(\sigma) = \max_{\sigma \in \Sigma_{pure}} \gamma^p_\infty(\sigma)$$

Definition

The decision problem $\Gamma(p)$ has a **strong uniform value** if it has an asymptotic value and $w_\infty(p) = v_\infty(p)$.
Introduction
Evaluation of the game

Relation between the three notions (1)

Proposition

\[w_{\infty}(p) \leq \sup_{\sigma \in \Sigma_{\text{pure}}} \left(\liminf_{n \to +\infty} E_{\sigma}^p \left(\frac{1}{n} \sum_{t=1}^{n} g(k_t, a_t) \right) \right), \]

\[\leq \sup_{\sigma \in \Sigma} \left(\liminf_{n \to +\infty} E_{\sigma}^p \left(\frac{1}{n} \sum_{t=1}^{n} g(k_t, a_t) \right) \right), \]

\[\leq \liminf_{n \to +\infty} v_n(p). \]

Consequently, if \(\Gamma(p) \) has a strong uniform value, the above inequalities are equalities, and \(\Gamma(p) \) has a uniform value in pure strategies.
Relation between the three notions (2)
Results (old and new)

Outline

1 Introduction
 • The model
 • Evaluation of the game

2 Results (old and new)

3 Outline of the proof
Results (old and new)

Perfect Information

Theorem (Blackwell 1962)
A finite POMDP where the decision maker observes the state has a uniform value ν_∞. Moreover it can be guarantee by pure strategies that only depends on the current state.

Corollary
Under these assumptions, there exists a strong uniform value.
General case (Old)

Theorem (Rosenberg Solan Vieille, 2002)
Any POMDP has a uniform value in behavior strategies.

Renault (2011) and Renault and Venel (2012) provide alternative proofs but again with behavior strategies.

Two questions:
- Do we need behavior strategies?
- What can we say on the stronger property of strong uniform value?
These two questions have been answered positively in several model: for example

- perfect information, compact metric actions space
 Feinberg (1978).

Rosenberg et al. showed that pure strategies are sufficient if S is a singleton.
General case (New)

Theorem (Venel and Ziliotto)

The POMDP $\Gamma(p_1)$ has a strong uniform value in behavior strategies:
for all $\epsilon > 0$, there exists σ^* a behavior strategy such that

$$\mathbb{E}_{\sigma^*}^{p_1} \left(\liminf_{n \to +\infty} \frac{1}{n} \sum_{m=1}^{n} g(k_m, a_m) \right) \geq v_\infty(p_1) - \epsilon.$$

Corollary

The POMDP $\Gamma(p)$ has a strong uniform value in pure strategies.
Outline

1. Introduction
 - The model
 - Evaluation of the game

2. Results (old and new)

3. Outline of the proof
Auxilliary MDP

Natural state variable: \(p_t = \mathbb{P}(k_t | \mathcal{H}_t) \)

Let \(\tilde{\Gamma} = (X, A, \tilde{q}, \tilde{g}) \) be defined as

- a set of states: \(X = \Delta(K) \)
- a payoff function: \(\tilde{g} : X \times A \rightarrow [0, 1] \)
 \[
 \tilde{g}(p, a) = \sum_k p^k g(k, a).
 \]
- a transition function: \(\tilde{q} : X \times A \rightarrow \Delta_f(X) \)
 \[
 \tilde{q}(p, a) = \sum_{s \in S} q(p, a)(s) \delta_{\hat{q}(p, a|s)},
 \]
 where \(\hat{q}(p, a|s) = \left(\frac{q(p, a)(k, s)}{q(p, a)(s)} \right)_{k \in K} \).
We present here the outline of the proof of a weaker result (intermediate between strong uniform value and uniform value):\

\[\tilde{\Gamma}(\rho) \text{ has a strong uniform value} \]

It is weaker than the previous theorem since plays in \(\tilde{\Gamma} \) and in \(\Gamma \) are different.
Fix an initial state $p \in \Delta(K)$.

- Define a special distribution μ^* over $\Delta(K)$: “invariant measure” from occupation measures.
- Prove that “from this distribution”, the pathwise uniform value exist.
- Show that from p, one can generate a distribution μ_n close to μ^*.
- Deduce a regularity property of the payoff on play starting from states in the support of μ_n.
Fix an initial state $p \in \Delta(K)$.

- Define a special distribution μ^* over $\Delta(K)$: “invariant measure” from occupation measures.
- Prove that “from this distribution”, the pathwise uniform value exist.
- Show that from p, one can generate a distribution μ_n close to μ^*.
- Deduce a regularity property of the payoff on play starting from states in the support of μ_n.
Fix an initial state $p \in \Delta(K)$.

- Define a special distribution μ^* over $\Delta(K)$: “invariant measure” from occupation measures.
- Prove that “from this distribution”, the pathwise uniform value exist.
- Show that from p, one can generate a distribution μ_n close to μ^*.
- Deduce a regularity property of the payoff on play starting from states in the support of μ_n.
Fix an initial state $p \in \Delta(K)$.

- Define a special distribution μ^* over $\Delta(K)$: “invariant measure” from occupation measures.
- Prove that “from this distribution”, the pathwise uniform value exist.
- Show that from p, one can generate a distribution μ_n close to μ^*.
- Deduce a regularity property of the payoff on play starting from states in the support of μ_n.
Lemma 1

Let \(p_1 \in \Delta(K) \). There exists a distribution \(\mu^* \in \Delta(\Delta(K)) \) and a stationary strategy \(\sigma^* : \Delta(K) \rightarrow \Delta(A) \) such that

- \(\mu^* \) is invariant if playing \(\sigma^* \),
- For every \(\varepsilon > 0 \), there exists a strategy \(\sigma \) and \(n \) such that
 \[
 d_{KR} \left(\frac{1}{n} \sum_{t=1}^{n} z_t(p_1, \sigma), \mu^* \right) \leq \varepsilon,
 \]
 where \(z_t(p_1, \sigma) \) is the distribution over belief at step \(t \).
- \(g(\mu^*) = v_\infty(\mu^*) = v_\infty(p_1) \).
Lemma 2

There exists $B \subset \Delta(K)$ such that

- $\mu^*(B) = 1$,
- for all $p \in B$,

$$\mathbb{E}_{\sigma^*}^p \left(\lim \inf \frac{1}{n} \sum_{t=1}^{n} g(k_t, a_t) \right) = v_\infty(p). \quad P_{\sigma^*}^p - a.s..$$

- Define a Markov chain \mathcal{M} on $K \times A \times \Delta(K)$ (state, action, belief).
- Apply Birkhoff’s ergodic theorem.
Outline of the proof

Proof of Lemma 2

- There exists \(\nu^* \) an invariant probability distribution for \(\mathcal{M} \) (defined from \(\mu^* \)).
- There exists \(B_0 \subset K \times A \times \Delta(K) \) and a function \(w \) such that
 - \(\nu^*(B_0) = 1 \),
 - for all \((k, a, p) \in B_0\), we have
 \[
 \frac{1}{n} \sum_{t=1}^{n} g(k_t, a_t) \xrightarrow{n \to +\infty} w(k, a, p) \quad P_{\sigma^*}^{k,a,p} - \text{almost surely}
 \]
 - \(w(\nu^*) = g(\nu^*) = v_\infty(\mu^*) \).

For almost all \(p \in B \), \(w(p) = E_p(w) = v_\infty(p) \).
Lemma 3

Let \(p, p' \in \Delta(K) \). For all \(\sigma \in \Sigma \), there exists \(\sigma' \in \Sigma \) such that

\[
E_{\sigma'}^{p'} \left(\liminf_{n \to +\infty} \frac{1}{n} \sum_{t=1}^{n} g(k_t, a_t) \right) \geq \\
E_{\sigma}^{p} \left(\liminf_{n \to +\infty} \frac{1}{n} \sum_{t=1}^{n} g(k_t, a_t) \right) - 2\|p - p'\|_1.
\]

The result is also true if one considers the \(n \)-stage payoff.
Outline of the proof

Conclusion of the proof

- Starting from p, by Lemma 1, there exists a strategy σ and $t_0 \in \mathbb{N}^\ast$ such that with high probability, $(k_{t_0}, a_{t_0}, p_{t_0})$ is close to B_0 and $\mathbb{E}_\sigma(v_\infty(p_{t_0}))$ is close to $v_\infty(p_1)$.

- Lemma 2 says that for all $p \in B$, the average-payoff along each play in $\tilde{\Gamma}(p)$ converges.

- Lemma 2 and Lemma 3 prove that the average-payoff along each play in $\tilde{\Gamma}(p_{t_0})$ almost-converges.

Conclusion: $\tilde{\Gamma}(p_1)$ has a pathwise uniform value.
Conclusions:
- No need for randomization when 1 player.
- More general framework in the paper: gambling house with uniformly equicontinuous value functions that we apply/adapt then to
 - 1-Lipschitz gambling houses,
 - MDP with compact state space,
 - POMDP with finite sets.

Further research:
- What can we say in a two-player zero-sum game with one controller and the players playing one after the other?
- What level of generality?
- Can we say something more on the ε-optimal strategies?
Thanks